首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of human carbonic anhydrase II at pH 9.5 has been studied by X-ray crystallographic methods to 2.2 A resolution. These studies complement those performed under acidic conditions in which the catalytically-important proton-shuttle group, His-64, exhibits conformational mobility about side-chain torsion angle chi 1. However, no structural changes are observed in the conformation of His-64 at high pH. Therefore, we conclude that the protonation of His-64 (as well as zinc-bound hydroxide) may be a factor which contributes to the predominantly "out" conformation for His-64 observed at low pH.  相似文献   

2.
Ervatamin A, a cysteine proteases from Ervatamia coronaria, has been used as model system to examine structure-function relationship by equilibrium unfolding methods. Ervatamin A belongs to alpha+beta class of proteins and exhibit stability towards temperature and chemical denaturants. Acid induced unfolding of ervatamin A was incomplete with respect to the structural content of the enzyme. Between pH 0.5 and 2.0, the enzyme is predominantly in beta-sheet conformation and shows a strong ANS binding suggesting the existence of a partially unfolded intermediate state (I(A) state). Surprisingly, high concentrations of GuHCl required to unfold this state and the transition mid points GuHCl induced unfolding curves are significantly higher. GuHCl induced unfolding of ervatamin A at pH 3.0 as well as at pH 4.0 is complex and cannot be satisfactorily fit to a two-state model for unfolding. Besides, a strong ANS binding to the protein is observed at low concentration of GuHCl, indicating the presence of intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8M) the enzyme retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to urea unfolding at pH 3.0 and below. Urea induced unfolding of ervatamin A at pH 3.0 is cooperative and the transitions curves obtained by different probes are and non-coincidental. Temperature denaturation of ervatamin A in I(A) state is non-cooperative, contrary to the cooperativity seen with native protein, suggesting the presence of two parts in the molecular structure of ervatamin A may be domains, with different stability that unfolds in steps. Careful inspection of biophysical properties of intermediate states populated in urea and GuHCl (I(UG) state) induced unfolding suggests all these three intermediates are identical and populated in different conditions. However, the properties of the intermediate (I(A) state) identified at pH approximately 1.5 are different from those of the I(UG) state.  相似文献   

3.
The effect of hexafluoroacetone hydrate (HFA) on the structure of the honey bee venom peptide melittin has been investigated. In aqueous solution at low pH melittin is predominantly unstructured. Addition of HFA at pH approximately 2.0 induces a structural transition from the unstructured state to a predominantly helical conformation as suggested by intense diagnostic far UV CD bands. The structural transition is highly cooperative and complete at 3.6 M (50% v/v) HFA. A similar structural transition is also observed in 2,2,2 trifluoroethanol which is complete only at a cosolvent concentration of approximately 8 M. Temperature dependent CD experiments support a 'cold denaturation' of melittin at low concentrations of HFA, suggesting that selective solvation of peptide by HFA is mediated by hydrophobic interactions. NMR studies in 3.6 M HFA establish a well-defined helical structure of melittin at low pH, as suggested by the presence of strong NH/NHi+1 NOEs throughout the sequence, along with many medium range helical NOEs. Structure calculations using NOE-driven distance constraints reveal a well-ordered helical fold with a relatively flexible segment around residues T10-G11-T12. The helical structure of melittin obtained at 3.6 M HFA at low pH is similar to those determined in methanolic solution and perdeuterated dodecylphosphocholine micelles. HFA as a cosolvent facilitates helix formation even in the highly charged C-terminal segment.  相似文献   

4.
The hysteresis observed in cyclic acid-base titrations of the three-standed polyribonucleotide helix poly (A)-2 POLY (U) strongly depends on ionic strength. For NaCl and at 25 degrees C, hysteresis occurs in the limited concentration range between 0.03 M and 1.0 M(NaCl). The transition points associated with the cyclic conversions between the triple helix and the poly (A)-poly (A) double helix and (free) poly (U) constitute a (pH ionic strength) phase diagram covering the ranges of stability and metastability of the hysteresis system. Variations with NaCl concentration of some hysteresis parameters can be quantitatively described in terms of polyelectrolyte theories based on the cylinder-cell model for rodlike polyions. The results of this analysis suggest that the metastability is predominantly due to dlectrostatic energy barriers preventing the equilibrium transition of the partially protonated triple helix above a critical pH value. Ultraviolet absorbance and potentiometric titration data of poly (A)in the acidic pH range can be analyzed in terms of two types of double-helical structures. Spectrophotometric titrations reveal isosbestic wavelengths for structural transitions of poly (A). "Time effects" commonly observed in poly (A) titrations are suggested to reflect helix transitions between the two acidic structures.  相似文献   

5.
A L Fink  B Painter 《Biochemistry》1987,26(6):1665-1671
The effect of methanol on the thermal denaturation of ribonuclease A has been investigated over the -40 to 70 degrees C range. The transition was fully reversible to at least 60% (v/v) methanol at an apparent pH of cryosolvent (pH) of 3.0 and was examined at methanol concentrations as high as 80%. The unfolding transition, as monitored by absorbance change at 286 nm, became progressively broader and occurred at increasingly lower temperatures as the alcohol concentration increased. In 50% methanol, increasing the pH from 2 to 6 shifted the transition to higher temperature. A substantial decrease in cooperativity was noted at the more acidic conditions. On the other hand, increasing concentrations of guanidine hydrochloride in 50% methanol caused the transition to shift to lower temperatures with little effect on the cooperativity. The observed effects on the cooperativity of the unfolding transition suggest that methanol and lower temperatures may increase the concentration of partially folded intermediate states in the unfolding of ribonuclease. Comparison of the transition in 50% methanol as determined by absorbance or fluorescence, which monitor the degree of exposure of buried tyrosines and hence the tertiary structure, to that determined by far-UV circular dichroism, which monitors secondary structure, indicated that the major unfolding transition occurred at a higher temperature in the latter case. Thus, the tertiary structure is lost at a lower temperature than the secondary structure. This observation is consistent with a model of protein folding in which initially formed regions of secondary structure pack together, predominantly by hydrophobic interactions, to give the tertiary structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The binding of dUMP, dTMP, UMP, and 5-fluoro-2′-deoxyuridylate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) was examined by direct thermal titration. The binding of each ligand was examined in two different buffers, so that proton interactions could be observed. In agreement with an earlier study (N. V. Beaudette, N. Langerman, R. L. Kisliuk, and Y. Gaumont, 1977, Arch. Biochem. Biophys.179, 272–278), dUMP binding is driven predominantly by enthalpy changes at pH 7.4, with 0.77 ± 0.07 mol of protons binding along with the substrate. When the pH is decreased to 5.8, binding affinity increases, and a substantial increase in the entropic contribution to the binding is observed. In contrast to the binding of protons with substrate at pH 7.4, protons are released at pH 5.8. The proton effects suggest a model in which binding occurs through an electrostatic interaction between dianionic nucleotide and protonated enzyme residues. Binding of FdUMP at pH 7.4 involves the uptake of protons, and is also predominantly driven by changes in enthalpy. A good fit to the thermal data is obtained using the single-site binding constant, K = 9.5 × 104m?1. Our earlier interpretation (Arch. Biochem. Biophys., 1977, 179, 272–278) of the thermal data indicating two sites is in error. Preliminary date are presented which suggest that two-site binding of FdUMP occurs on prolonged incubation during equilibrium dialysis. Binding of the product dTMP shows different behavior. The reaction is entropically driven, suggesting that a significant hydrophobic interaction occurs between the protein and the 5-methyl group of the nucleotide. Only 0.48 ± 0.08 mol of protons are absorbed at pH 7.4. Binding of the nucleotide UMP could not be detected at pH 7.4.  相似文献   

7.
We examined the role of pH gradient and membrane potential in dipeptide transport in purified intestinal and renal brush-border membrane vesicles which were predominantly oriented right-side out. With an intravesicular pH of 7.5, changes in extravesicular pH significantly affected the transport of glycyl-L-proline and L-carnosine, and optimal dipeptide transport occurred at an extravesicular pH of 5.5-6.0 in both intestine and kidney. When the extravesicular pH was 5.5, glycyl-L-proline transport was accelerated 2-fold by the presence of an inward proton gradient. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated glycyl-L-proline transport, and the stimulation was observed in the presence and absence of Na+. A carbonyl cyanide p-trifluoromethoxyphenylhydrazone-induced H+ diffusion potential (interior-positive) reduced dipeptide transport. It is suggested that glycyl-L-proline and proton(s) are cotransported in intestinal and renal brush-border membrane vesicles, and that the process results in a net transfer of positive charge.  相似文献   

8.
R E Johnson  J A Rupley 《Biochemistry》1979,18(16):3611-3616
The association reactions of NADH and NAD+ with dimeric pig heart supernatant malate dehydrogenase (s-MDH) have been measured at pH 6 and 8 by calorimetric and fluorescence methods, and the thermodynamic parameters describing these reactions have been evaluated. Coenzyme binding is associated with the uptake of 0.55 mol of H+/mol of NADH at pH 8 and 0.19 mol of H+ at pH 6. No significant effect of NAD+ binding on proton binding was observed. Increase in ionic strength strongly affects the free energies of binding of NAD+ and NADH. No cooperativity was observed in the enthalpy or free energy changes for binding of NAD+ or NADH. The differences in free energy of binding of NAD+ and NADH and the effect of pH on binding of NADH are entropy based. These effects are interpreted as reflecting a small number of interactions within the active site that are predominantly ionic.  相似文献   

9.
In amyloidosis associated with apolipoprotein A-I (ApoA-I), heart amyloid deposits are mainly constituted by the 93-residue ApoA-I N-terminal region. A recombinant form of the amyloidogenic polypeptide, named [1-93]ApoA-I, shares conformational properties and aggregation propensity with its natural counterpart. The polypeptide, predominantly in a random coil state at pH 8.0, following acidification to pH 4.0 adopts a helical/molten globule transient state, which leads to formation of aggregates. Here we provide evidence that fibrillogenesis occurs also in physiologic-like conditions. At pH 6.4, [1-93]ApoA-I was found to assume predominantly an α-helical state, which undergoes aggregation at 37°C over time at a lower rate than at pH 4.0. After 7 days at pH 6.4, protofibrils were observed by atomic force microscopy (AFM). Using a multidisciplinary approach, including circular dichroism (CD), fluorescence, electrophoretic, and AFM analyses, we investigated the effects of a lipid environment on the conformational state and aggregation propensity of [1-93]ApoA-I. Following addition of the lipid-mimicking detergent Triton X-100, the polypeptide was found to be in a helical state at both pH 8.0 and 6.4, with no conformational transition occurring upon acidification. These helical conformers are stable and do not generate aggregated species, as observed by AFM after 21 days. Similarly, analyses of the effects of cholesterol demonstrated that this natural ApoA-I ligand induces formation of α-helix at physiological concentrations at both pH 8.0 and 6.4. Zwitterionic, positively charged, and negatively charged liposomes were found to affect [1-93]ApoA-I conformation, inducing helical species. Our data support the idea that lipids play a key role in [1-93]ApoA-I aggregation in vivo.  相似文献   

10.
Structural transitions of porin, a transmembrane protein   总被引:6,自引:0,他引:6  
Conformational transitions of porin were monitored using 3 independent criteria: (i) oligomeric state as observed by SDS-polyacrylamide gel electrophoresis; (ii) spectroscopic titrations (ultraviolet and circular dichroism) and (iii) chemical modifications. Four pH-dependent transitions were observed with half-maximal changes occurring at pH values of 1.6, 3.5, 11.2 and 12.4. Two of these pH values differ significantly from intrinsic pK values of the constituent amino acids of this membrane protein. Since porin is very polar despite its location predominantly within the outer membranes, this may be due to ion pair formation in the hydrophobic environment of the membrane.  相似文献   

11.
Small-angle neutron scattering has been used to examine taxol-stabilized microtubules and other tubulin samples in both H(2)O and D(2)O buffers. Measurements were made at pH/pD values between 6.0 and 7.8, and observed scattered intensities, I(Q), have been interpreted in terms of multicomponent models of microtubules and related tubulin polymers. A semiquantitative curve fitting procedure has been used to estimate the relative amounts of the supramolecular components of the samples. At both pH and pD 7.0 and above, the tubulin polymers are seen to be predominantly microtubules. Although in H(2)O buffer the polymer distribution is little changed as the pH varies, when pD is lowered the samples appear to contain an appreciable amount of sheetlike structures and the average microtubule protofilament number increases from ca. 12.5 at pD > or = approximately 7.0 to ca. 14 at pD approximately 6.0. Such structural change indicates that analysis of microtubule solutions based on H(2)O/D(2)O contrast variation must be performed with caution, especially at lower pH/pD.  相似文献   

12.
A differential fixation of poly(L-arginine) and poly(L-lysine) has been demonstrated by means of cellulose acetate electrophoresis and colorimetric titration. Electrophoresis showed that at pH 3.0 and concentrations between 0.025% and 2% the reagent interacts with poly(L-arginine) but not with poly(L-lysine). at pH 7.5, however, poly(L-lysine) also reacts, although at a higher concentration of tannic acid than was required to fix poly(L-arginine) at this pH. Colorimetric titration revealed that for poly(L-arginine) the reaction with tannic acid commences at pH 3.0 and is complete at pH 4.1 whereas for poly(L-lysine) the reaction commences at pH 3.5 and is complete at pH 4.9. It is suggested that the reaction is predominantly electrostatic. The results are discussed in relation to the use of tannic acid as a protein fixative in electron microscopy.  相似文献   

13.
Fluidity of the red blood cell membrane decreases as pH changes from 8 to 7.5. In rat liver mitochondrial (RLM) membrane fluidity precipitously declines as pH drops from 7.35 toward 7.0. With dithionitrobenzoate (Nbs2), reaction rates of mitochondrial -SH groups from rat liver and heart (RHM) and in beef heart submitochondrial particles are reduced at pH 7.0 as compared to 7.35. Similar results are obtained with the lipophilic fluorescence dye monobromobimane (MB). Bromobimane Q (MQ), which predominantly labels superficially located -SH groups, does not detect differences in -SH reaction rate between pH 7.35 and 7.0. Oligomycin diminishes the amount of reactive -SH groups in RLM titrated with Nbs2 only at pH 7.35, whereas with MB a decrease caused by oligomycin is found at pH 7.35 and pH 7.0. With MQ, an increase in reaction rate is observed for both pH values after pretreatment with oligomycin. Using 4-maleimido-TEMPO mobilization of -SH groups is found with oligomycin at pH 7.0, whereas at pH 7.35 they are immobilized. Phosphate significantly stimulates reaction rates of -SH groups at pH 7.0 in RHM and RLM. In RHM inhibition of succinate oxidation by oxaloacetate as well as the efflux of NAD(P)H is enhanced at pH 7.0, indicating increased permeability in both directions. Decreases in pH, fluidity, and thiol reactivity are important factors in hypoxic/ischemic membrane damage.  相似文献   

14.
Poly-L -lysine exists as an α-helix at high pH and a random coil at neutral pH. When the α-helix is heated above 27°C, the macromolecule undergoes a conformational transition to a β-sheet. In this study, the stability of the secondary structure of poly-L -lysine in solutions subjected to shear flow, at temperatures below the α-helix to β-sheet transition temperature, were examined using Raman spectroscopy and CD. Solutions initially in the α-helical state showed time-dependent increases in viscosity with shearing, rising as much as an order of magnitude. Visual observation and turbidity measurements showed the formation of a gel-like phase under flow. Laser Raman measurements demonstrated the presence of small amounts of β-sheet structure evidenced by the amide I band at 1666 cm−1. CD measurements indicated that solutions of predominantly α-helical conformation at 20°C transformed into 85% α-helix and 15% β-sheet after being sheared for 20 min. However, on continued shearing the content of β-sheet conformation decreased. The observed phenomena were explained in terms of a “zipping-up” molecular model based on flow enhanced hydrophobic interactions similar to that observed in gel-forming flexible polymers. © 1998 John Wiley & Sons, Inc. Biopoly 45: 239–246, 1998  相似文献   

15.
Thermally reversible acid-induced gelation of low-methoxy pectin   总被引:1,自引:0,他引:1  
Gelation of low-methoxy pectin (DE 31.1) on cooling under acidic conditions in the absence of Ca2+ has been investigated by rheological measurements under low-amplitude oscillatory shear. The mechanical spectra obtained after 60 min at 5°C showed a progressive increase in solid-like response (increasing G′; decreasing tan δ; increasing frequency-dependence of η*) as the pH was reduced from 4.0 to 1.6, with formation of a critically crosslinked network at pH 3.0 (for a polymer concentration of 3.0 wt%). By extrapolation from X-ray fibre diffraction analysis of pectic acid, it is suggested that crosslinking occurs by association of three-fold helices. At pH values between 3.5 and 2.5 there is no detectable thermal hysteresis between the sol–gel transition on cooling and gel–sol transition on heating, and both are accompanied by a sigmoidal change in optical rotation (attributed to formation and melting of three-fold order). Substantial hysteresis is, however, observed at lower and higher pH, and is attributed to extensive aggregation as electrostatic repulsion is suppressed (below pH 2.5) and slow formation of intermolecular hydrogen bonds by protonated carboxyl groups (above pH 3.5), respectively. The transition enthalpy from DSC heating scans has a maximum value of ΔH≈11 J/g at pH 3.0, but decreases sharply at lower and higher pH, with accompanying loss of a detectable transition in optical rotation. It is suggested that the chain conformation in solution at low pH is predominantly three-fold with, therefore, little conformational change on adoption of the ordered, intermolecular structure, whereas at high pH the solution conformation is predominantly two-fold, with only limited conversion to the three-fold (acid) form on cooling.  相似文献   

16.
When pea lectin was exposed to a low pH range, it was found that the secondary structure of the lectin resisted conformational changes to a large extent up to pH 2.4 and below this pH, a sharp transition was observed which could be due to the presence of 27 acidic amino acid residues present in the protein. The effects of 1,1,1,3,3,3 hexafluoro-isopropanol (HFIP) and 2,2,2-Trifluoroethanol (TFE) on the conformation of pea lectin at pH 2.4 were studied using circular dichroism and fluorescence spectroscopy. Analysis varying the TFE concentration showed that up to 80% TFE (v/v) protein retained the residual beta-structure accompanied by a loss in tertiary structure. A similar conformation is presumed to exist at 4% HFIP (v/v), with an increase in HFIP concentration structural rearrangements occurred and a transition from beta-structure to alpha-helical structure started from 12% HFIP which completed at 30% HFIP. Our studies show the occurrence of a common intermediate in the folding pathway of pea lectin induced by two different fluoroalcohols, which differ in their mode of action to stabilize the secondary structure of a given protein. While TFE was not found to induce any alpha-helical structure, HFIP caused the transition of pea lectin, which is predominantly a beta-sheet protein, to a structure rich in alpha-helical contacts. Thus, our results also point out the possibility of a non-hierarchical model of protein folding in lectins.  相似文献   

17.
Insertion of charged groups at the N-terminus of the gramicidin A (gA) amino acid sequence is considered to be fatal for peptide channel-forming activity because of hindrance to the head-to-head dimer formation. Here the induction of ionic conductivity in planar bilayer lipid membranes (BLM) was studied with gA analogs having lysine either in the first ([Lys1]gA) or the third ([Lys3]gA) position. If added to the bathing solution at neutral or acidic pH, these analogs, being protonated and thus positively charged, were unable to induce ionic current across BLM. By contrast, at pH 11 the induction of BLM conductivity was observed with both lysine-substituted analogs. Based on the dependence of the macroscopic current on the side of the peptide addition, sensitivity to calcium ions and susceptibility to sensitized photoinactivation, as well as on the single-channel properties of the analogs, we surmise that at alkaline pH [Lys1]gA formed channels with predominantly single-stranded structure of head-to-head helical dimers, whereas [Lys3]gA open channels had the double-stranded helical structure. CD spectra of the lysine-substituted analogs in liposomes were shown to be pH-dependent.  相似文献   

18.
The modification of both beta-Tyr-368 and beta-His-427 can be correlated with the loss of activity observed when the bovine mitochondrial F1-ATPase is inactivated with 5'-p-fluorosulfonylbenzoyl[3H]adenosine ([3H]FSBA). At pH 8.0, where the rate of inactivation is fast, beta-Tyr-368 is modified predominantly, while at pH 6.0, where the rate of inactivation is slow, beta-His-427 is modified predominantly. At pH 7.0, the 2 residues are modified with about equal efficiency. When the F1-ATPase was inactivated by 80% at pH 6.5, 7.0, and 7.5, the sum of radioactivity incorporated into beta-Tyr-368 and beta-His-427 was 1.99, 1.87, and 1.82 mol of label incorporated per mol of enzyme, respectively. Examination of the rate of inactivation of the enzyme by FSBA as a function of pH revealed two pKa values, one of about 7.6 associated with the modification of beta-Tyr-368 and the other of about 5.8 associated with the modification of beta-His-427. The inactivation of the F1-ATPase by FSBA exhibited an initial fast rate followed by a slower rate in triethanolamine-HCl, pH 7.0. In contrast, only a single rate, equivalent to the fast phase of inactivation in the absence of phosphate, was observed in 0.2 M phosphate, pH 7.0. The dependence of this stimulation on phosphate concentration is sigmoidal with half-maximal stimulation occurring at approximately 160 mM. The ratio of 3H incorporated into beta-Tyr-368 to that incorporated into beta-His-427 was approximately the same during the fast and slow phases of inactivation in triethanolamine-HCl, pH 7.0. Approximately the same ratio was observed when the enzyme was modified during the single phase of inactivation exhibited in the presence of 0.2 M phosphate, pH 7.0. The sum of the 3H incorporated into beta-Tyr-368 and beta-His-427 during inactivation of the F1-ATPase from bovine heart mitochondria by [3H]FSBA in the presence and absence of phosphate was linear and extrapolated to a value of about 2.6 residues modified on complete inactivation of the enzyme. From these data, it is concluded that FSBA binds to a single binding site on the beta subunits of the enzyme where it reacts with either beta-Tyr-368 or beta-His-427 in mutually exclusive reactions. All three beta subunits must be modified in this manner for complete inactivation to be observed.  相似文献   

19.
A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) was designed and genetically engineered to form antiparallel beta-strands of GAGAGA repeats. Modulation of pH enables control of solubility, folding, and aggregation of YE8 by control of the overall polypeptide charge, a consequence of the protonation or deprotonation of the glutamic acid and histidine residues. YE8 exhibits all the major properties of a fibrillogenic protein providing an excellent model for detailed study of the fibrillation. At neutral pH, YE8 is soluble in disordered form, yet at pH 3.5 folds into a predominantly beta-sheet conformation that is fibrillogenic. Atomic force microscopy and transmission electron microscopy indicated the formation of fibrillar aggregates on well-defined, hydrophobic surfaces. The beta-sheet folding of YE8 exhibited a lag phase that could be eliminated by seeding or stirring. The strong dependence of lag time on polypeptide concentration established the limiting step in aggregation as initiation of beta-sheet folding.  相似文献   

20.
Vertical profiles of total dissolved arsenic, manganese and iron, pH, Eh and rates of sulfate reduction were determined in a freshly-collected box core from a 335m depth station in the Laurentian Trough. The relationships observed between the profiles were further examined in the laboratory by measuring these same parameters with time in surficial sediment slurries as the Eh decreased in response to biological activity or chemical alteration.Both field and laboratory observations have shown that arsenic is released predominantly as As(III) into reducing sediment porewaters. This occurs after the dissolution of manganese oxides and at the same time as the dissolution of iron oxyhydroxides and the onset of sulfate reduction. Laboratory experiments indicated that sulfate reduction and the production of sulfide ions are not solely responsible for the release of arsenic to the porewaters, although this process is necessary to create and maintain a highly reducing environment conducive to rapid iron dissolution.The diagenesis of arsenic in Laurentain Trough sediments involves the simultaneous release of arsenic and iron at a subsurface depth, followed by its removal from porewaters by precipitation and adsorption reactions after migration by diffusion along concentration gradients. A qualitative model is presented to describe the behavior of arsenic in coastal marine sediments.Present address: Department of Geological Sciences, McGill University, 3450 UniversityStreet, Montreal, Quebec H3A 2A7, Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号