首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Classical biological control is the most successfuland promising way to replace chemical pesticides. Thesubspecies israelensis of Bacillusthuringiensis (Bti) is a safe and efficient agent tocontrol mosquito larvae and hence mosquito-bornediseases. One approach to overcome the low efficacyand short half-life in nature of current formulationsof Bti is by expressing the toxin genes in recombinantcyanobacteria as a delivery system. Attempts toexpress Bti toxin in cyanoabcteria have been carriedout during the last ten years. Toxicities of thetransgenic strains were however very low, even underregulation of strong promoters, too low to beeffective in vivo. Two Bti Cry proteins haverecently been co-expressed in the filamentousnitrogen-fixing cyanobacterium Anabaena PCC7120, resulting in clones with the highest toxicitiesand stabilities ever reached so far. However, toobtain a long-lasting preparation, it would be usefulto express Bti toxin genes in cyanobacterial strainsisolated from nature. This approach requiresdevelopment of a system for effective transformationinto such strains. Releasing such recombinant strainsto open environments is still a major obstacle inexploiting this biotechnology.  相似文献   

2.
Two colonies of Culex quinquefasciatus Say (Diptera: Culicidae) were selected with Bacillus sphaericus strains C3-41 and IAB59 in the laboratory for 13 and 18 generations; they attained 145,000- and 48.3-fold resistance, respectively, in comparison with a susceptible laboratory colony (SLCq) and showed very high levels of cross-resistance (8500- to 145,000-fold) to B. sphaericus strains C3-41, 1593, 2297 and 2362. They were relatively susceptible to B. sphaericus strains LP1-G and 47-6B (only 0.8- to 2.8-fold tolerance), with 24.8- to 48.3-fold cross-resistance to strain IAB59. B. sphaericus-resistant mosquito colonies remained highly susceptible to B. thuringiensis israelensis, suggesting that B.t.i. would be of value in the management of B. sphaericus-resistant Cx. quinquefasciatus colonies. The demonstration of low or no cross-resistance of two selected resistant Cx. quinquefasciatus colonies to IAB59, LP1-G and 47-6B strains of B. sphaericus and the finding of a major 49 kDa protein in these strains suggest that there is likely to be another mosquitocidal factor in the three strains.  相似文献   

3.
Culex quinquefasciatus mosquitoes with high levels of resistance to single or multiple toxins from Bacillus thuringiensis subsp. israelensis were tested for cross-resistance to the Bacillus thuringiensis subsp. jegathesan polypeptide Cry19A. No cross-resistance was detected in mosquitoes that had been selected with the Cry11A, Cry4A and Cry4B, or Cry4A, Cry4B, Cry11A, and CytA toxins. A low but statistically significant level of cross-resistance, three to fourfold, was detected in the colony selected with Cry4A, Cry4B, and Cry11A. This cross-resistance was similar to that previously detected with B. thuringiensis subsp. jegathesan in the same colony. These data help explain the toxicity of B. thuringiensis subsp. jegathesan against the resistant colonies and indicate that the Cry19A polypeptide might be useful in managing resistance and/or as a component of synthetic combinations of mosquitocidal toxins.  相似文献   

4.
The genes cyt1Aa and p20 , encoding, respectively, cytolytic and accessory proteins of Bacillus thuringiensis subsp. israelensis , were introduced into previously constructed clones expressing cry4Aa and cry11Aa in Escherichia coli ( Ben-Dov et al ., 1995 ). Fifteen clones with all possible combinations of the four genes were obtained and found to express the genes included. Two new combinations, pVE4-ADRC and pVE4-ARC, expressing cyt1Aa , p20 and cry4Aa , with or without cry11Aa , respectively, were more toxic than their counterparts without cyt1Aa . They displayed the highest toxicity against Aedes aegypti larvae ever reached in transgenic bacteria. Five out of the six clones (except pVE4-DC) containing cry4Aa or cry11Aa (with or without p20 ) displayed varying levels of synergism with cyt1Aa : they are 1.5-to 34-fold more toxic than the respective clones without cyt1Aa against exposed larvae. Their lethal times also decreased (they kill larvae quicker), more so at higher cell concentrations. These clones are anticipated to dramatically reduce the likelihood of resistant development in the target organisms ( Wirth et al ., 1997 ).  相似文献   

5.
We present evidence that Anabaena PCC7120 (A.7120) strains expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis (Bti) have a strong potential for biotechnological application. Characterization of two 4-year-old recombinant A.7120 clones constructed previously in our laboratory [clone 7 and clone 11, each carrying three Bti genes (cry4Aa, cry11Aa, and p20)] revealed three facts. First, the Bti genes were stable in A.7120 even in the absence of antibiotic selection when the genes were integrated in the chromosome (in clone 11); and the genes were also stable as plasmid-borne constructs (in clone 7), provided the cultures were maintained under continued selection. Second, clone 7 (kept under selection) and clone 11 (either kept or not kept under selection) continued to be mosquitocidal through 4 years of culture. Third, growth of the recombinant clones was comparable to the wild type under optimal growth conditions, indicating that growth was not compromised by the expression of toxin genes. These results clear the way for the development of mass production techniques for A.7120 strains expressing Bti toxin genes.  相似文献   

6.
Persistence of biological control agents against mosquito larvae was tested under simulated field conditions. Mosquito larvicidal activity of transgenic Anabaena PCC 7120 expressing cry4Aa, cry11Aa and p20 from Bacillus thuringiensis ssp. israelensis was greater than B. thuringiensis ssp. israelensis primary powder (fun 89C06D) or wettable powder (WP) (Bactimos products) when either mixed with silt or exposed to sunlight outdoors. Reduction of Bactimos primary powder toxicity was at least 10-fold higher than Anabaena's after mixing with silt. In outdoors experiments, Bactimos WP remained toxic (over 30% mortality of 3rd instar Aedes aegypti larvae) for 2-4 days only, while transgenic Anabaena's toxicity endured 8-21 days.  相似文献   

7.
Comparing activities of purified toxins from Bacillus thuringiensis ssp. israelensis against larvae of seven mosquito species (vectors of tropical diseases) that belong to three genera, gleaned from the literature, disclosed highly significant variations in the levels of LC50 as well as in the hierarchy of susceptibilities. Similar toxicity comparisons were performed between nine transgenic Gram-negative species, four of which are cyanobacterial, expressing various combinations of cry genes, cyt1Aa and p20 , against larvae of four mosquito species as potential agents for biological control. Reasons for inconsistencies are listed and discussed. Standard conditions for toxin isolation and presentation to larvae are sought. A set of lyophilized powders prepared identically from six Escherichia coli clones expressing combinations of four genes displayed toxicities against larvae of three mosquito species, with levels that differed between them but with identical hierarchy.  相似文献   

8.
Optimization of chicken feather (CF) based culture medium for the production of Bacillus thuringiensis subsp. israelensis (Bti) biomass in combination with the agro industrial by-product (coconut cake, CC) and manganese chloride (MnCl2) has been evaluated. The biomass yield of Bti spore/crystal toxin was highest (12.06 g/L) from the test medium (CF+CC+MnCl2) compared to the reference medium (Luria Bertani, LB). Toxicity assay with Bti produced from the test medium against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti) was also satisfactory and results were comparable with bacteria produced from LB. The results suggest that Bti can be produced to the maximum extent possible as a potential mosquitocidal activity as suggested by the test medium (CF+CC+MnCl2).  相似文献   

9.
10.
Bacillus thuringiensis NTB-1 isolated from soil samples in Korea produces ovoidal parasporal inclusions with proteins of approximately 24–40 kDa in size. Although serological study indicated that the isolate has a flagella (H) antigen identical with subsp. israelensis , it seemed to be non-insecticidal against Lepidoptera and Coleoptera as well as Diptera. To investigate the activity of non-insecticidal B. thuringiensis transformed with insecticidal crystal protein genes, cryIVD and cytA genes of B. thuringiensis subsp. morrisoni PG-14, highly toxic to mosquito larvae, were introduced into the isolate NTB-1. The expression of mosquitocidal crystal protein genes in NTB-1 was characterized by SDS–PAGE analysis and electron microscopy. The results showed that crystalline inclusions of host, CryIVD and CytA were stably expressed in the transformant. However, the mosquitocidal activity of transformant was similar to that of B. thuringiensis subsp. kurstaki Cry B harbouring cryIVD and cytA genes, demonstrating that a synergistic effect by an interaction of both introduced insecticidal and resident non-insecticidal crystal proteins was not observed.  相似文献   

11.
The genes cryIVA and cryIVD, encoding 134- and 72-kDa proteins, respectively, and the gene for a regulatory 20-kDa polypeptide of Bacillus thuringiensis subsp. israelensis (serovar H14) were cloned in all seven possible combinations by the Escherichia coli expression vectors pT7 and pUHE. The four combinations containing cryIVA (cryIVA alone, with cryIVD, with the 20-kDa-protein gene, and with both) displayed high levels of mosquito larvicidal activity in pUHE. The toxicity of the combination of cryIVA and cryIVD, with or without the 20-kDa-protein gene, was higher than has ever been achieved with delta-endotoxin genes in recombinant E. coli. Fifty percent lethal concentrations against third-instar Aedes aegypti larvae for these clones decreased (i.e., toxicity increased) continuously to about 3 x 10(5) cells ml-1 after 4 h of induction. Larvicidal activities, obtained after 30 min of induction, were lower for clones in pT7 and decreased for an additional 3.5 h. Induction of either cryIVD or the 20-kDa-protein gene alone resulted in no larvicidal activity in either pT7 or pUHE20. Cloned together, these genes were slightly toxic in pT7 but not in pUHE20. Five minutes of induction of this combination (cryIVD with the 20-kDa-protein gene) in pT7 yielded a maximal mortality of about 40%, which decreased rapidly and disappeared completely after 50 min. CryIVD is thus apparently degraded in E. coli and partially stabilized by the 20-kDa regulatory protein. Larvicidal activity of the combination of cryIVA and cryIVD was sevenfold higher than that of cryIVA alone, probably because of the cross-stabilization of the polypeptides or the synergism between their activities.  相似文献   

12.
The maximum recovery period following topical ocular instillation and intraperitoneal injection of two preparations of Bacillus thuringiensis ssp. israelensis de Barjac and two preparations of Bacillus sphaericus 2362 was evaluated in rabbits and mice. B. sphaericus 2362 persisted for 8 wk after administration to the conjunctival cul-de-sac of rabbits; B. thuringiensis ssp. israelensis persisted for 1 wk. Infection was not evident, but both entomopathogens were recovered from flushed and unflushed eyes. High doses of B. sphaericus 2362 (greater than or equal to 10(8) colony-forming units) were toxic to CD-1 mice, and the toxic factor was heat stable. Injection of 10(7) colony-forming units of B. sphaericus 2362 resulted in clearance from the spleens of euthymic and athymic mice. Recovery occurred up to 67 d after injection. Mice failed to remove one preparation of B. thuringiensis ssp. israelensis from their spleen, and a constant number of colony-forming units were recovered for 80 d. B. sphaericus 2362 and B. thuringiensis ssp. israelensis were recovered from heart blood; their disappearance from heart blood coincided with their clearance from the spleen. There was no evidence that either organism was infectious. We conclude that these organisms can be used safely in environments where human exposure might occur.  相似文献   

13.
A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.  相似文献   

14.
A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.  相似文献   

15.
Both Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis produce mosquitocidal toxins during sporulation and are extensively used in the field for control of mosquito populations. All the known toxins of the latter organism are known to be encoded on a large plasmid, pBtoxis. In an attempt to combine the best properties of the two bacteria, an erythromycin resistance-marked pBtoxis plasmid was transferred to B. sphaericus by a mating technique. The resulting transconjugant bacteria were significantly more toxic to Aedes aegypti mosquitoes and were able to overcome resistance to B. sphaericus in a resistant colony of Culex quinquefasciatus, apparently due to the production of Cry11A but not Cry4A or Cry4B. The stability of the plasmid in the B. sphaericus host was moderate during vegetative growth, but segregational instability was observed, which led to substantial rates of plasmid loss during sporulation.  相似文献   

16.
Proteins with molecular masses of 36 and 34 kDa (Bti36 and Bti34) were isolated from entomocidal crystals formed by Bacillus thuringiensis ssp. israelensis cells. The samples of Bti36 contained the admixture of a protein with a molecular mass of 33 kDa (Bti33), apparently a product of proteolysis of Bti36. These 3 proteins are significantly different in N-terminal sequences from known delta-endotoxins of B. thuringiensis and show antibacterial activity toward Micrococcus luteus. The combination of Bti36 and Bti33 also suppresses the growth of some other microorganisms including Streptomyces chrysomallus. The effects of the mixture of Bti36 and Bti33 on the M. luteus cell surface and on the surface of S. chrysomallus cells and exospores are similar, but they are different from the effect of endotoxin Cry11A on micrococcal cells.  相似文献   

17.
Culex quinquefasciatus mosquitoes with high levels of resistance to single or multiple toxins from Bacillus thuringiensis subsp. israelensis were tested for cross-resistance to the Bacillus thuringiensis subsp. jegathesan polypeptide Cry19A. No cross-resistance was detected in mosquitoes that had been selected with the Cry11A, Cry4A and Cry4B, or Cry4A, Cry4B, Cry11A, and CytA toxins. A low but statistically significant level of cross-resistance, three to fourfold, was detected in the colony selected with Cry4A, Cry4B, and Cry11A. This cross-resistance was similar to that previously detected with B. thuringiensis subsp. jegathesan in the same colony. These data help explain the toxicity of B. thuringiensis subsp. jegathesan against the resistant colonies and indicate that the Cry19A polypeptide might be useful in managing resistance and/or as a component of synthetic combinations of mosquitocidal toxins.  相似文献   

18.
Mosquitocidal endotoxins Cry4B, Cry11A, and CytA from Bacillus thuringiensis ssp. israelensis as well as the products of their limited proteolysis display antibacterial activity relative to Micrococcus luteus. The endotoxin Cry11A also induces the lysis of the micrococcus protoplasts. Potassium and sodium ions and N-acetylgalactosamine increased the antibacterial effect of Cry11A, whereas glucose and N-acetylglucosamine inhibited it. The endotoxin Cry11A displays the antibacterial effect on some other microorganisms.  相似文献   

19.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

20.
The mosquitocidal glycoprotein endotoxin of Bacillus thuringiensis subsp. israelensis was digested with chymotrypsin to yield protease-resistant domains which were then separated from smaller protease digestion products by high-performance liquid chromatography. Once purified, the domains no longer bound wheat germ agglutinin, a lectin which binds N-acetylglucosamine (GlcNAc) and GlcNAc oligomers. Purified protease-resistant domains were as toxic for Culex quinquefasciatus larvae as intact solubilized toxin. In separate experiments, the toxicity of chymotrypsin-digested endotoxin for Aedes aegypti larvae was reduced fivefold or more. A model is presented in which GlcNAc-containing oligosaccharides are required for toxicity for A. aegypti larvae but not C. quinquefasciatus larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号