首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The objective of this study was to assess the practical usefulness of morphologically poor oocytes (MPCOCs) in relation to follicular size and oocyte diameter. Oocytes collected from medium (3–8 mm in diameter) and small (<3 mm) follicles were classified into five categories of morphologically good oocytes (MGCOCs) from medium follicles (MA, control), MPCOCs with larger and smaller diameters from medium follicles (ML and MS, respectively), and those from small follicles (SL and SS, respectively). The oocytes were examined for maturation and developmental competence after parthenogenesis and somatic cell nuclear transfer (SCNT). Nuclear maturation of ML oocytes (91%) was similar to that of control oocytes (94%), but higher than MS (80%), SL (79%), and SS (63%) oocytes. This pattern was also observed in the intracellular glutathione level, p34cdc2 kinase activity, and gene (CDK1, PCNA, and ERK2) expression levels in in vitro‐matured oocytes. ML oocytes showed a similar proportion of blastocyst formation (20%) after SCNT to control oocytes (21%). In addition, the use of ML oocytes resulted in a 50% farrowing rate with 1.8% efficiency of piglet production after SCNT embryo transfer, while control oocytes showed a 60% farrowing rate with 2.4% production efficiency. Our results demonstrate that MPCOCs, if appropriately selected, have a comparable ability to MGCOCs in supporting not only in vitro blastocyst formation, but also development to term in vivo after SCNT. These oocytes can be used as a source for in vitro production of embryos with normal in vivo viability in pigs. Mol. Reprod. Dev. 77: 330–339, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
Oocyte-secreted factors enhance oocyte developmental competence   总被引:6,自引:0,他引:6  
The capacity of fully grown oocytes to regulate their own microenvironment by paracrine factors secreted by the oocyte (oocyte-secreted factors, OSFs) may in turn contribute to oocyte developmental competence. Here, we investigated if OSFs have a direct influence on oocyte developmental competence during in vitro maturation (IVM). Bovine cumulus-oocyte complexes (COCs) were aspirated from abattoir-derived ovaries and matured in serum-free medium. COCs were either co-cultured with denuded oocytes (DOs) or treated with specific OSFs: recombinant bone morphogenetic protein 15 (BMP15) and/or growth differentiation factor 9 (GDF9). Following maturation, embryos were fertilized and cultured in vitro and blastocyst development and cell number were assessed on day 8. Co-culturing intact COCs with DOs did not affect cleavage rate, but increased (P<0.001) the proportion of cleaved embryos that reached the blastocyst stage post-insemination from 39% to 51%. OSFs also altered blastocyst cell allocation as co-culture of COCs with DOs significantly increased total and trophectoderm cell numbers, compared to control COCs. BMP15 alone, GDF9 alone or the two combined all (P<0.05) increased the proportion of oocytes that reached the blastocyst stage post-insemination from 41% (controls) to 58%, 50% and 55%, respectively. These results were further verified in neutralization experiments of the exogenous growth factors and of the native OSFs. Follistatin and the kinase inhibitor SB-431542, which antagonize BMP15 and GDF9, respectively, neutralized the stimulatory effects of the exogenous growth factors and impaired the developmental competence of control COCs. These results demonstrate that OSFs, and particularly BMP15 and GDF9, enhance oocyte developmental competence and provide evidence that OSF regulation of the COC microenvironment is an important determinant of oocyte developmental programming.  相似文献   

5.
Otoi T  Fujii M  Tanaka M  Ooka A  Suzuki T 《Theriogenology》2000,54(4):535-542
This study was conducted to determine the diameter of canine oocytes that are able to attain full meiotic competence and sperm penetration. Oocytes were collected from ovaries of bitches at various stages of the estrous cycle. Only healthy-looking cumulus-oocyte complexes were used for in vitro maturation, and were divided into four groups based on diameter: <100, 100 to <110, 110 to <120 and >120 microm. Following in vitro maturation or fertilization, oocytes were stained to assess nuclear maturation and penetration rates. The mean oocyte diameter was 108.5 +/- 0.4 microm. The oocytes displayed size-related ability to undergo meiotic maturation. After culture for 72 h, the rates of oocytes that remained at the germinal vesicle stage in the <110 microm groups were significantly higher (P<0.01) than in the > or = 110 microm groups. None of the oocytes <110 microm reached metaphase II (MU), but 4.9 and 21.5% of the oocytes that were greater than 110 and 120 microm, respectively, progressed to MII. After in vitro fertilization for 20 h, 10 to 25% of oocytes were penetrated by spermatozoa, but there were no clear relationships between oocyte diameter and penetration rates of the oocyte by sperm. In the <120 microm groups, sperm penetration was mostly found in oocytes arrested at the germinal vesicle stage. However, a total of eight oocytes > or = 120 microm in diameter were penetrated by spermatozoa, of which five oocytes reached MII. These results suggest that there is a clear relationship between oocyte diameter and meiotic competence, but no relationship between oocyte diameter and sperm penetration. Canine oocytes may have acquired meiotic competence once they reach at a diameter of 120 microm, but the oocytes may allow the entry of spermatozoa into the ooplasm irrespective of oocyte diameter.  相似文献   

6.
Follicular oocyte growth and acquisition of developmental competence   总被引:7,自引:0,他引:7  
At birth the ovaries of mammalian females contain a finite store of primordial follicle oocytes. Each oocyte and its surrounding follicle cells share a communication system, the gap junction network, which facilitates the transfer of signals as well as nutrients in to and out off the oocyte and between follicle cells. The connexin family of proteins form the building blocks of this communication network, their expression is specific to the differentiated state of the granulose cell and the stage of folliculogenesis. Factors such as the c-kit receptor and its ligand, IGF-I, IGF-I receptors and the IGF binding proteins, members of the transforming growth factor beta (TGFbeta) family, in particular, some of the bone morphogenetic proteins, play prominent roles in oogenesis, primordial follicle activation and subsequent follicle/oocyte development culminating in oocyte ovulation. The oocyte undergoes a progressive series of morphological modifications as it grows and proceeds through the different stages of development. These structural rearrangements facilitate the increasing energy and nucleic acid synthesis requirements of the developing oocyte and are a prerequisite to the oocytes achievement of meiotic and embryo developmental competence. Several factors determine the ultimate competence of the oocyte, these have been investigated and attempts made to mimic these conditions in vitro. The complexity of the orchestration of the events that control oocyte growth and ultimate acquisition of developmental competence is under continuous investigation. The present review describes some of the findings to date.  相似文献   

7.
Effects of maternal age on oocyte developmental competence   总被引:5,自引:0,他引:5  
Armstrong DT 《Theriogenology》2001,55(6):1303-1322
The widespread use of a variety of assisted reproductive technologies has removed many of the constraints that previously restricted mammalian reproduction to the period between onset of puberty and reproductive senescence. In vitro embryo production systems now allow oocytes from very young animals to undergo fertilization and form embryos capable of development to normal offspring, albeit at somewhat reduced efficiencies compared to oocytes from adult females. They also can overcome infertility associated with advanced age of animals and women. This review examines oocyte developmental competence as the limiting factor in applications of assisted reproductive technologies for both juvenile and aged females. Age of oocyte donor is a significant factor influencing developmental competence of the oocyte. Age-related abnormalities of oocytes include a) meiotic incompetence or inability to complete meiotic maturation resulting in oocytes incapable of fertilization; b) errors in meiosis that can be compatible with fertilization but lead to genetic abnormalities that compromise embryo viability; and c) cytoplasmic deficiencies that are expressed at several stages of development before or after fertilization. In general, oocytes from juvenile donors and the embryos derived therefrom appear less robust and may be less tolerant to suboptimal handling and in vitro culture conditions than are adult oocytes. Research to identify specific cytoplasmic deficiencies of juvenile oocytes may enable modifications of culture conditions to correct such deficiencies and thus enhance developmental competence. Use of oocytes from aged donors for assisted reproduction can have a variety of applications such as extending the reproductive life of individual old females whose offspring still have high commercial value, and conservation of genetic resources such as rare breeds of livestock and endangered species. In general, female fertility decreases with advancing age. Studies of women in oocyte donation programs have established reduced oocyte competence as the major cause of declining fertility with age, although inadequate endometrial function can also be a contributing factor. Most research has emphasized the importance of chromosomal abnormalities because of the well established increase in aneuploidy with increasing maternal age but little is known about the underlying cellular and molecular mechanisms. Research aimed at identifying the specific developmental deficiencies of oocytes from juvenile donors and abnormalities of oocytes from aged females will assist in overcoming present bottlenecks that limit the efficiency of assisted reproduction technologies. Such research will also be crucial to the development of new oocyte-based technologies for overcoming infertility and possibly subverting chromosomal abnormalities in women approaching menopause.  相似文献   

8.
To identify potential markers of maturation quality, differences in developmental capacity between cow and calf oocytes were compared in parallel with their constitutive and neosynthetic protein profiles before and after in vitro maturation (IVM). A comparison was also made between the protein profiles of follicular fluid (FF) from calf and cow ovaries. The effect of epidermal growth factor (EGF) during IVM on the subsequent development of prepubertal calf oocytes was examined. The effect of the presence of fetal calf serum (FCS) during development of embryos originating from calf oocytes was also examined. No differences were noted between the constitutive proteins of cow and calf oocytes and only a minor modification was observed before IVM in the pattern of neosynthesized proteins (presence of a band of 37 kD and a slight increase in the intensity of band of 78 kD in cow as compared to calf oocytes). However, the comparison of constitutive protein profiles from calf and cow FF demonstrated quantitative (the bands of 34 and 45 kD were more intense for cow than for calf) differences. EGF receptors (EGF-R) were demonstrated on cumulus—oocytes complexes (COCs) by immunofluorescence. There was no difference in intensity between cow and calf COCs. Furthermore, the addition of EGF during IVM of calf oocytes dramatically stimulated cumulus expansion and significantly increased the cleavage rate at 72 h post-insemination (82% vs 67%), as well as the proportion of embryos at the 5- to 8-cell stage at this time (54% vs 43%). Also, blastocyst yields at day 6 (11% vs 5%) and at day 8 (17% vs 10%) were significantly higher in the presence of EGF P < 0.05). The addition of FCS to synthetic oviduct fluid droplets at day 2 of culture (48 hpi) had no effect on cleavage, blastocyst yield, or blastocyst cell number. In conclusion, differences in developmental ability between calf and cow oocytes would appear to be not solely linked to differences in oocyte protein patterns. It is likely that the FF, which constitutes the microenvironment in which the oocyte develops, plays a major modulating role in determining the fate of the oocyte/follicle. © 1996 Wiley-Liss, Inc.  相似文献   

9.
10.
Oocyte maturation and ovulation require a coordinated interaction between gonadotrophs, steroid hormones, and growth factors. The extent to which estrogen is required in this process, however, remains unclear. To better understand the role of estrogen in maintaining developmental competence of mammalian oocytes, we studied the Aromatase knockout (ArKO) mouse, which has been genetically engineered to be incapable of synthesizing endogenous estrogen. Previous studies have established that ArKO female mice are anovulatory with ovaries that progressively degenerate, developing hemorrhagic cystic follicles. In young ArKO females, however, apparently healthy follicles and oocytes have been observed. We investigated if these oocytes could be induced to ovulate, then mature, fertilize, and develop in vitro. Following a standard superovulation protocol, ArKO oocytes did not ovulate. When recovered manually from the ovary, however, ArKO oocytes successfully progressed through in vitro maturation, fertilization, and development to the blastocyst stage at the same rate as wild-type and heterozygote littermates. Therefore, it appears that estrogen is not required for the production and growth of oocytes capable of maturation and complete preimplantation development but is required for continued follicle growth and feedback regulation of ovulation.  相似文献   

11.
Recently, oocyte quality in sows culled for reasons unrelated to fertility was found to decline during the period of seasonal infertility. Wean-to-service interval (WSI) has also been associated with pregnancy loss in sows mated during the period of seasonal infertility. The aims of this study were to determine whether WSI and season are associated with changes in oocyte developmental competence in sows experiencing early (before Day 35 of gestation) and late (after Day 35 of gestation) pregnancy loss. Ovaries were collected in pairs from sows sourced from commercial piggeries that were culled for reasons related to infertility after being mated in summer and winter/spring. Sows were grouped according to their pregnancy loss type, their previous WSI and the presence or absence of corpora lutea (CL) on their ovaries. Oocyte developmental competence was assessed following in vitro maturation, artificial activation and parthenote development in vitro. In sows culled for early-pregnancy loss, there was a greater number of CL present on ovaries collected in spring compared to those collected in summer (11.57±3.3 vs. 9.26±0.99; P<0.05). Also, the proportion of oocytes developing to the blastocyst stage was greater in summer than in spring (55.9±5.2% vs. 31.2±6.4%; P<0.05). In sows culled for late-pregnancy loss, a greater proportion of oocytes developed to the blastocyst stage in winter compared with late-spring (64.3±7.0% vs. 34.1±6.6%; P<0.05). In addition, the blastocyst formation rate of oocytes was lower in sows that displayed a WSI≤6 days than in sows that displayed a WSI>6 days (37.8±7.3% vs. 62.2±6.9%; P<0.05). The results of the present study indicate that sows culled for pregnancy loss exhibit seasonal changes in oocyte developmental competence. The mechanism which causes WSI to be prolonged does not appear to result in reduced oocyte developmental competence. While poor oocyte quality and the mechanism that increases WSI may contribute to pregnancy loss during the seasonal infertility period, the findings suggest that these factors are not the main drivers of early and late pregnancy loss throughout the year.  相似文献   

12.
The equine oocyte: Factors affecting meiotic and developmental competence   总被引:1,自引:0,他引:1  
There is currently much interest in assisted reproduction techniques in the horse, however, many aspects of oocyte maturation, fertilization, and embryo development in the horse differ from those in other species. Because of the close attachment of the equine oocyte to the follicle wall, scraping of the follicle is the most effective method for oocyte recovery. A notable feature of equine oocytes is that those with expanded cumuli (Ex oocytes), which originate from atretic follicles, have higher meiotic competence (ability to mature to metaphase II in vitro) than do oocytes with compact cumuli (Cp oocytes). Cp oocytes originate in viable follicles but are largely juvenile. Recovery and culture of equine oocytes immediately after slaughter yields a higher maturation rate than that obtained from oocytes after ovary storage; this is related to damage to chromatin in Cp oocytes during storage. In contrast, developmental competence (rate of blastocyst development in vitro) is higher in oocytes recovered from the ovary after a delay. The optimum duration of maturation varies based on cumulus morphology and time of recovery from the ovary, but there is no difference in developmental competence between Ex and Cp oocytes. Because standard in vitro fertilization is not repeatable in the horse, oocyte transfer (surgical transfer of oocytes to the oviducts of inseminated mares) has been developed to allow fertilization of isolated oocytes. Fertilization in vitro may be achieved using intracytoplasmic sperm injection; culture of injected oocytes in a medium with high glucose can yield over 30% blastocyst development. Mol. Reprod. Dev. 77: 651–661, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
To test the hypothesis that oocytes require time to acquire developmental competence during meiotic arrest, we investigated the effects of butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinase, on the developmental competence of bovine oocytes after in vitro fertilization (IVF) following release from meiotic arrest. In the present study, 4 culture conditions were used: addition of BSA or fetal bovine serum (FBS) under 2 oxygen tensions (5% vs. 20%) during meiotic arrest with 100-microM BL I. The developmental competence to the blastocyst stage was higher (P < 0.01) in oocytes that were arrested in FBS-supplemented medium under 5% O2 (37%) than in oocytes that were arrested under other conditions (5%-24%) or that matured directly following follicle aspiration (23%). The time course of nuclear maturation of BL I-treated oocytes was also examined. The results demonstrated that oocytes treated with BL I start germinal vesicle (GV) breakdown and reach the metaphase II stage 5.5-6.0 h earlier than nonarrested oocytes. The developmental rates to the blastocyst stage of BL I-treated oocytes matured for 15.5 and 21 h were higher (P < 0.05) than those of nontreated oocytes matured for 21 and 26.5 h, respectively. These results demonstrate that bovine immature oocytes, which were arrested at the GV stage with BL I in FBS-supplemented medium under low oxygen tension, acquire higher developmental competence during meiotic arrest.  相似文献   

15.
Alkylphenolic compounds are a widespread family of xenoestrogens. High concentrations of these substances are present in sewage sludge that is spread on arable land and pasture as fertilizer. Because of their known endocrine system-disrupting activity, alkylphenols represent a potential risk for the reproductive health of farm animals. In this study, the impact of p-tert-octylphenol (OP) on the developmental competence of bovine oocytes was evaluated. Endocrine activity of OP was investigated for its effect on estrogen receptors alpha and beta (ERalpha and ERbeta) and progesterone receptor (PR) mRNA levels. Cumulus-oocyte complexes (COCs) were exposed during in vitro maturation to serial concentrations of OP (1-0.0001 microg/ml) and were compared with vehicle-treated controls and a group of COCs treated with 17 beta-estradiol (E2). A dose-related decrease in the percentage of oocytes that completed maturation after 24 h and in oocyte fertilization competence was observed at doses of OP as low as 0.01 microg/ml. Groups treated with > or =0.001 microg/ml OP showed impaired embryo development. No adverse effects of E2 were observed. In the E2-treated COCs, ERalpha mRNA was decreased but PR mRNA was upregulated compared with controls. Treatment with 0.001 and 0.0001 microg/ml OP induced a decrease in ERalpha mRNA, but ERbeta and PR mRNA were not affected. Treatment with 0.01 microg/ml OP did not produce changes in the expression of any of the mRNAs studied. OP impairs meiotic progression and developmental competence of bovine oocytes without demonstrating clear estrogen-mimic activity.  相似文献   

16.
Oocytes from aging ovaries contain mitochondria with morphological and genetic flaws. How these flaws relate to phenotypes of oocyte developmental compromise associated with clinical infertility is not well understood. This study was conducted to investigate the role of mitochondria in the developmental compromises observed with female aging using a mouse model of mitochondrial dysfunction. Oocytes obtained from aging (30-40 wk) (C57BL/6J x CBACaH)F1 (B6CBAF1) hybrid female mice were photosensitized with mitochondrial fluorophore rhodamine-123 for variable durations and compared to similarly treated oocytes derived from pubertal mice (4-6 wk). Blastocyst development of normally fertilized oocytes from both age-groups correlated negatively in mathematically unique profiles with irradiation time, with a more sudden decline in development for oocytes from aging mice. Complete inhibition of blastocyst development occurred following a shorter duration of photosensitization for oocytes from aging compared to pubertal animals (60 vs. 90 sec). Prolonged photosensitization resulted in mitochondrial uncoupling and promoted localized generation of reactive oxygen species, mitochondrial permeabilization, and apoptotic phenotypes. Thus, aging oocytes are more developmentally sensitive to mitochondrial damage than pubertal oocytes but undergo similar metabolic and apoptotic responses. These and future findings may encourage further optimization of laboratory-based strategies to minimize mitochondrial injury to oocytes, particularly those from older women, and improve clinical outcomes for women with age-related etiologies of infertility.  相似文献   

17.
The role of mitochondria as a nexus of developmental regulation in mammalian oogenesis and early embryogenesis is emerging from basic research in model species and from clinical studies in infertility treatments that require in vitro fertilization and embryo culture. Here, mitochondrial bioenergetic activities and roles in calcium homeostasis, regulation of cytoplasmic redox state, and signal transduction are discussed with respect to outcome in general, and as possible etiologies of chromosomal defects, maturation and fertilization failure in human oocytes, and as causative factors in early human embryo demise. At present, the ability of mitochondria to balance ATP supply and demand is considered the most critical factor with respect to fertilization competence for the oocyte and developmental competence for the embryo. mtDNA copy number, the timing of mtDNA replication during oocyte maturation, and the numerical size of the mitochondrial complement in the oocyte are evaluated with respect to their relative contribution to the establishment of developmental competence. Rather than net cytoplasmic bioenergetic capacity, the notion of functional compartmentalization of mitochondria is presented as a means by which ATP may be differentially supplied and localized within the cytoplasm by virtue of stage-specific changes in mitochondrial density and potential (ΔΨm). Abnormal patterns of calcium release and sequestration detected at fertilization in the human appear to have coincident effects on levels of mitochondrial ATP generation. These aberrations are not uncommon in oocytes obtained after ovarian hyperstimulation for in vitro fertilization. The possibility that defects in mitochondrial calcium regulation or bioenergetic homeostasis could have negative downstream development consequences, including imprinting disorders, is discussed in the context of signaling pathways and cytoplasmic redox state.  相似文献   

18.
Assessment of the quality of the female gamete has become paramount for in vitro procedures. There is a need to identify reliable indicators of oocyte competence and develop a simple, non-invasive method to assess competence. The aim of this study was to investigate the relationships among ultrasonographic attributes of a follicle, its stage of development and the competence of the oocyte that it contains. We tested the hypotheses that follicular echotexture characteristics are related to: (1) the phase of development of the follicle, (2) the presence of the corpus luteum (CL) and/or the dominant follicle in the ovary, and (3) developmental competence of cumulus oocyte complexes (COC) from the same ovary. Crossbred beef cows (n=143), age 4-14 years, were given a luteolytic dose of dinoprost to cause ovulation. Ultrasound-guided ablation of all follicles > or = 4mm was done 8 days later to induce new follicular wave emergence during a luteal phase. Ultrasonographic images of dominant follicles and the three largest subordinate follicles (n=402 follicles; 84 cows) were acquired on Days 2, 3, 5 or 7 of the follicular wave (Day 0: wave emergence), i.e. growing, early-static, late static, and regressing phases of subordinate follicle development, respectively. From a subset of these animals (n=33), ovaries were collected within 30 min of slaughter and COC from subordinate follicles > or = 3mm underwent in vitro maturation, fertilization and culture to the blastocyst stage.Image analysis revealed differences in echotexture between dominant and subordinate follicles among Days 2-7 of the follicular wave. Images of dominant and subordinate follicles at Day 7 of the wave displayed consistently lower grey-scale values (P<0.05) in the peripheral antrum, follicular wall and perifollicular stroma than all other days. Follicle images displayed a consistent pattern of variation in echotexture among follicular phases. Data did not support the hypothesis of a local effect of the CL or dominant follicle on follicular echotexture. Echotexture values of the perifollicular stroma were lower in ovaries that did not produce embryos compared to ovaries that produced embryos. Our results showed that the changes in follicular image attributes are consistent with changes in follicular status. The sensitivity of the technique is not yet sufficient for use in a diagnostic setting, but results provide rationale for further development of image analysis as a tool for evaluating oocyte competence in situ.  相似文献   

19.
《Theriogenology》2016,86(9):1625-1634.e2
The positive effect of n-3 polyunsaturated fatty acids (FAs) on fertility in ruminants seems to be partly mediated through direct effects on the oocyte developmental potential. We aimed to investigate whether supplementation with physiological levels of docosahexaenoic acid (DHA, C22:6 n-3 polyunsaturated fatty acids) during IVM has an effect on oocyte maturation and in vitro embryo development in cattle. We reported that DHA (0, 1, 10, or 100 μM) had no effect on oocyte viability or maturation rate after 22-hour IVM. Incubation of oocyte-cumulus complexes with 1-μM DHA during IVM significantly increased (P < 0.05) oocyte cleavage rate as compared with control (86.1% vs. 78.8%, respectively) and the greater than 4-cell embryo rate at Day 2 after parthenogenetic activation (39.1% vs. 29.7%, respectively). Supplementation with 1 μM DHA during IVM also induced a significant increase in the blastocyst rate at Day 7 after IVF as compared with control (30.6% vs. 17.6%, respectively) and tended to increase the number of cells in the blastocysts (97.1 ± 4.9 vs. 81.2 ± 5.3, respectively; P = 0.08). On the contrary, 10-μM DHA had no effects, whereas 100-μM DHA significantly decreased the cleavage rate compared with control (69.5% vs.78.8%, respectively) and the greater than 4-cell embryo rate at Day 2 after parthenogenetic activation (19.5% vs. 29.7%). As was shown by real-time polymerase chain reaction, negative effects of 100-μM DHA were associated with significant increase of progesterone synthesis by oocyte-cumulus complexes, a three-fold increase in expression level of FA transporter CD36 and a two-fold decrease of FA synthase FASN genes in cumulus cells (CCs) of corresponding oocytes. Docosahexaenoic acid at 1 and 10 μM had no effect on expression of those and other key lipid metabolism-related genes in CC. In conclusion, administration of a low physiological dose of DHA (1 μM) during IVM may have beneficial effects on oocyte developmental competence in vitro without affecting lipid metabolism gene expression in surrounding CCs, contrarily to 100 μM DHA which diminished oocyte quality associated with perturbation of lipid and steroid metabolism in CC.  相似文献   

20.
While not fulfilling the criterion of a "stem cell" in being capable of self-renewal, mature and fertilized oocytes are the original "toti-potent" cells, whose capacity for expansion and differentiation can only be approximated by stem cells of embryonic or adult origin in vitro. As such, the mechanisms by which oocytes acquire and manifest competence to support embryo development is of fundamental interest to efforts to control and re-specify somatic cell fate and toti-potency. This is underscored by the unparalleled capacity of oocyte cytoplasm to successfully re-specify the genetic program of animal development following cell nuclear replacement (i.e., cloning). Thus, the knowledge gained by understanding the acquisition of oocyte developmental competence could ultimately facilitate the creation of adult stem cells in vitro from terminally differentiated cells, ex ovo. In this paper, we review the concept of oocyte developmental competence, and focus on our own research and that of others implicating a role for neurotrophins in this process, and that of oocyte cell survival. Lastly we propose a role for neurotrophin signalling in embryo stem cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号