首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a contribution to the development of novel vanadyl complexes with potential insulin-mimetic activity, three new oxovanadium(IV) complexes with the formula VO(L)(2), where L are 3-amino-quinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives, have been synthesized. Complexes have been characterized by elemental and thermal analyses, fast atom bombardment mass spectroscopy (FAB-MS), conductivity measurements and electronic, Fourier transform infrared (FTIR) and electron paramagnetic resonance (EPR) spectroscopies. The in vitro insulin-mimetic activity of the vanadyl complexes has been estimated by lipolysis inhibition tests, in which the inhibition of the release of free fatty acid from isolated rat adipocytes treated with epinephrine was determined. All the complexes showed inhibitory effects on free fatty acid release. [V(IV)O(3-amino-6(7)-bromoquinoxaline-2-carbonitrile N(1),N(4)-dioxide)(2)] exhibited higher in vitro insulin-mimetic activity than the very active bis(6-methylpicolinato)oxovanadium(IV), VO(6mpa)(2). This new vanadyl complex is expected to exhibit a higher blood glucose lowering activity than VO(6mpa)(2) in diabetic animals.  相似文献   

2.
3.
New vanadium complexes of the type [V(IV)O(L)(2)], where L are 3-aminoquinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives, were prepared as an effort to obtain new anti-trypanosomal agents improving the bioactivity of the free ligands. Complexation to vanadium of the quinoxaline ligands leads to excellent antiprotozoal activity, similar to that of the reference drugs nifurtimox and benznidazole and in all cases higher than that of the corresponding free ligands. In addition, it is for the first time that the V((IV))O-quinoxaline complexes are reported as a family of anti-Trypanosoma cruzi agents. Finally, the anti-trypanosomal activity of these vanadium complexes could be explained on the basis of their lipophilicity and the electronic characteristics of the quinoxaline substituents.  相似文献   

4.
Complexes of vanadium(IV), vanadyl, are reported to be formed with the trihydroxamic acid deferoxamine (H3DF+). One complex exhibits a reddish-violet color, with a major absorbance peak at 386 nm and a smaller peak at 520 nm. This complex is potentially useful for the microdetermination of vanadyl. The apparent molar absorptivity is 3.91 mM-1 cm-1, and the complex obeys Beer's law in the concentration range of 0.6-63 ppm. Electron spin resonance studies indicate the formation of two vanadyl complexes that are 1:1 in vanadyl and deferoxamine, but have two or three bound hydroxamate groups. ESR and spectrophotometric evidence indicate that the red, low pH form, involves an octahedral vanadium (4+) ion coordinated by three hydroxamate ligands. One of these hydroxamates is displaced by an oxygen at pH greater than 2.8 according to the following equilibria: VO2+ + H3DF+ in equilibrium with VIV(DF)2+ + H3O+, VIV(DF)2+ + H2O in equilibrium with VO(HDF)+ + H+, where pk2 = 2.8.  相似文献   

5.
Cytotoxic and antitumor activities of the biligand vanadyl derivative of L-malic acid, (bis-(L-malato)oxovanadium(IV) (VO(mal)2), the inorganic vanadium(IV) compound, vanadyl sulfate (VOSO4), the oxovanadium monocomplex with L-malic acid (VO(mal)), and the vanadyl biscomplex with acetylacetonate (VO(acac)2) were investigated using several tumor cell lines: mouse fibrosarcoma (L929), rat pheochromocytoma (PC12), human liver carcinoma (HepG2), mouse embryonic fibroblasts (NIH/3T3), and also normal human skin fibroblasts. The results showed that VO(mal)2 effectively inhibited growth of cancer cell cultures without any toxic effect on normal human skin fibroblasts. The cytotoxic anticancer effect of vanadium complexes depended on concentration of the compounds studied, incubation time, types of cell cultures, and nature of ligands surrounding the central group of the complex (VO2+). These studies provide evidence that VO(mal)2 may be considered as a potential anticancer agent due to its low toxicity for non-tumor cells and significant anticancer activity.  相似文献   

6.
The insulinomimetic effect of vanadium is the most remarkable and important among its several biological actions. Vanadyl ion (+4 oxidation state of vanadium) and its complexes have been found to normalize the blood glucose levels of both type 1 and 2 diabetic animals. We have developed insulinomimetic vanadyl complexes having different coordination modes, emphasizing the possible usefulness of vanadyl-picolinate [VO(pa)(2)] and its related complexes with the VO(N(2)O(2)) coordination mode. In order to apply these complexes clinically in the future, the relationship between the chemical structure, insulinomimetic action, organ distribution of vanadium, and blood disposition of vanadyl species must be closely investigated. In the present investigation, we studied the blood disposition of the vanadyl-picolinate complexes in healthy rats, and tried to understand comprehensively the relationship between the structures, insulinomimetic activity, and metallokinetic parameters of the complexes, which had been recently prepared and specifically synthesized for the present study, by using an in vivo blood circulation monitoring -- electron spin resonance (BCM-ESR) method for analyzing ESR signals due to paramagnetic metal ions and complexes in the blood in real time. Metallokinetic parameters were estimated based on the blood clearance curves in terms of a two-compartment pharmacokinetic model, and vanadyl species were indicated to be distributed in peripheral tissues and gradually eliminated from the circulating blood, depending on their chemical structures. Vanadyl concentrations in the blood of rats given bis(5-iodopicolinato)oxovanadium(IV) [VO(5ipa)(2)] and bis(3-methylpicolinato)oxovanadium(IV) [VO(3mpa)(2)] with electron-withdrawing and donating groups, respectively, remained significantly higher and longer, due to their slower clearance rates from the blood, than in rats given other complexes, suggesting that the high exposure and long residence of vanadyl species bring about the high normoglyceric effect in diabetic animals. We then examined the relationship between insulinomimetic activity and metallokinetic parameters in the family of VO(pa)(2) for further development of insulinomimetic vanadyl complexes. IC(50), the 50% inhibitory concentration of the complexes on the free fatty acid release from isolated rat adipocytes treated with epinephrine, was found to be sufficiently correlated with metallokinetic parameters such as area under the concentration curve, mean residence time, total clearance, and distribution volume at steady-state. Furthermore, the in vivo antidiabetic activity of the complexes was enhanced with increasing exposure and residence of vanadyl species in the blood of animals. On the basis of these results, we concluded that in vitro insulinomimetic activity, metallokinetic character, and in vivo antidiabetic action of vanadyl-picolinate complexes are closely related to their chemical structures.  相似文献   

7.
Novel bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione (curcumin) complexes with the formula, ML(3), where M is Ga(III) or In(III), or of the formula, ML(2) where M is [VO](2+), have been synthesized and characterized by mass spectrometry, infrared and absorption spectroscopies, and elemental analysis. A new ligand, bis[4-acetyl-3-hydroxyphenyl]-1,6-heptadiene-3,5-dione (diacetylbisdemethoxycurcumin, DABC) was similarly characterized; an X-ray structure analysis was performed. Vanadyl complexes tested in an acute i.p. testing protocol in STZ-diabetic rats showed a lack of insulin enhancing potential. Vanadyl complexes were, however, more cytotoxic than were the ligands alone in standard MTT (3-[4,5-dimethylthiazole-2-yl]ate, -2,5-diphenyl-tetrazolium bromide) cytotoxicity testing, using mouse lymphoma cells. With the exception of DABC, that was not different from VO(DABC)(2), the complexes were not significantly different from one another, with IC(50) values in the 5-10 microM range. Gallium and indium curcumin complexes had IC(50) values in the same 5-10 microM range; whereas Ga(DAC)(3) and In(DAC)(3) (where DAC=diacetylcurcumin) were much less cytotoxic (IC(50)=20-30 microM). Antioxidant capacity was decreased in VO(DAC)(2), Ga(DAC)(3), and In(DAC)(3), compared to vanadyl, gallium and indium curcumin, corroborating the importance of curcumin's free phenolic OH groups for scavenging oxidants, and correlated with reduced cytotoxic potential.  相似文献   

8.
A new vanadyl(IV) complex of the disaccharide lactose was obtained in aqueous solution at pH = 13. The sodium salt of the complex, of composition Na4[VO(lactose)2].3H2O, has been characterized by elemental analysis and by ultraviolet-visible, diffuse reflectance, and infrared spectroscopies. Its magnetic susceptibility and thermal behavior were also investigated. The inhibitory effect on alkaline phosphatase activity was tested for this compound as well as for the vanadyl(IV) complexes with maltose, sucrose, glucose, fructose, and galactose. For comparative purposes, the free ligands and the vanadyl(IV) cation were also studied. The free sugars and the sucrose/VO complex exhibited the lowest inhibitory effect. Lactose-VO, maltose-VO, and the free VO2+ cation showed an intermediate inhibition potential, whereas the monosaccharide/VO complexes appeared as the most potent inhibitory agents.  相似文献   

9.
A new vanadyl complex, bis(5-iodopicolinato)oxovanadium(IV), VO(IPA)2, with a VO(N2O2) coordination mode, was prepared by mixing 5-iodopicolinic acid and VOSO4 at pH 5, with the structure characterized by electronic absorption, IR, and EPR spectra. Introduction of the halogen atom on to the ligand enhanced the in vitro insulinomimetic activity (IC50 = 0.45 mM) compared with that of bis(picolinato)oxovanadium(IV) (IC50 = 0.59 mM). The hyperglycemia of streptozotocin-induced insulin-dependent diabetic rats was normalized when VO(IPA)2 was given by daily intraperitoneal injection. The normoglycemic effect continued for more than 14 days after the end of treatment. To understand the insulinomimetic action of VO(IPA)2, the organ distribution of vanadium and the blood disposition of vanadyl species were investigated. In diabetic rats treated with VO(IPA)2, vanadium was distributed in almost all tissues examined, especially in bone, indicating that the action of vanadium is not peripheral. Vanadyl concentrations in the blood of normal rats given VO(IPA)2 remain significantly higher and longer than those given other complexes because of its slower clearance rate. VO(IPA)2 binds with the membrane of erythrocytes, probably owing to its high hydrophobicity in addition to its binding with serum albumin. The longer residence of vanadyl species shows the higher normoglyceric effects of VO(IPA)2 among three complexes with the VO(N2O2) coordination mode. On the basis of these results, VO(IPA)2 is indicated to be a preferred agent to treat insulin-dependent diabetes mellitus in experimental animals.  相似文献   

10.
The insulin-like action of a novel class of potential insulin-mimetic complexes was investigated in terms of free fatty acid (FFA) release from isolated rat adipocytes. Vanadyl complexes such as VO(ema)2 [(bis(2-ethyl-3-hydroxy-4-pyrone)VO], VO(mpp)2 [bis (3-hydroxy-2-methyl-4(1H)-pyridinone)VO], VO(dmpp)2 [bis(1,2-dimethyl-3-hydroxy-4(1H)-pyridinone)VO] and VO(empp)2 [bis(2-ethyl-3-hydroxy-1-methyl-4(1H)-pyridinone)VO] were tested together with vanadyl sulfate for comparison. The inhibitory effect of the vanadium complexes on FFA release, from rat adipocytes treated with epinephrine, is dependent on concentration and for that reason the results are reported in terms of the IC50 value, the 50% inhibition concentration. The results show that all the complexes have an inhibitory effect on FFA release and that two pyridinone complexes, VO(mpp)2 and VO(empp)2, have a significantly better insulin-mimetic activity than that of vanadyl sulfate.  相似文献   

11.
We have previously shown that different vanadium(IV) complexes regulate osteoblastic growth. Since vanadium compounds are accumulated in vivo in bone, they may affect bone turnover. The development of vanadium complexes with different ligands could be an alternative strategy of use in skeletal tissue engineering. In this study, we have investigated the osteogenic properties of a vanadyl(IV)-ascorbate (VOAsc) complex, as well as its possible mechanisms of action, on two osteoblastic cell lines in culture. VOAsc (2.5-25 microM) significantly stimulated osteoblastic proliferation (113-125% basal, p<0.01) in UMR106 cells, but not in the MC3T3E1 cell line. VOAsc (5-100 micrioM) dose-dependently stimulated type-I collagen production (107-156% basal) in osteoblasts. After 3 weeks of culture, 5-25 microM VOAsc increased the formation of nodules of mineralization in MC3T3E1 cells (7.7-20-fold control, p<0.001). VOAsc (50-100 microM) significantly stimulated apoptosis in both cell lines (170-230% basal, p<0.02-0.002), but did not affect reactive oxygen species production. The complex inhibited alkaline and neutral phosphatases from osteoblastic extracts with semi-maximal effect at 10 microM doses. VOAsc induced the activation and redistribution of P-ERK in a time- and dose-dependent manner. Inhibitors of the mitogen activated protein kinases (MAPK) pathway (PD98059 and UO126) partially blocked the VOAsc-enhanced osteoblastic proliferation and collagen production. In addition, wortmanin, a PI-3-K inhibitor and type-L channel blocker nifedipine also partially abrogated these effects of VOAsc on osteoblasts. Our in vitro results suggest that this vanadyl(IV)-ascorbate complex could be a useful pharmacological tool for bone tissue regeneration.  相似文献   

12.
Four new palladium(II) complexes with the formula Pd(L)2, where L are quinoxaline-2-carbonitrile N1,N4-dioxide derivatives, were synthesized as a contribution to the chemistry and pharmacology of metal compounds with this class of pharmacologically interesting bioreductive prodrugs. Compounds were characterized by elemental, conductometric and thermogravimetric analyses, fast atom bombardment mass spectrometry (FAB-MS) and electronic, Fourier transform infrared (FTIR) and 1H-nuclear magnetic resonance spectroscopies. The complexes were subjected to cytotoxic evaluation on V79 cells in hypoxic and aerobic conditions. In addition, a preliminary study on interaction with plasmid DNA in normoxia was performed. Complexes showed different in vitro biological behavior depending on the nature of the substituent on the quinoxaline ring. Pd(L1)2 and Pd(L2)2, where L1 is 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide and L2 is 3-amino-6(7)-methylquinoxaline-2-carbonitrile N1,N4-dioxide, showed non selective cytotoxicity, being cytotoxic either in hypoxic or in aerobic conditions. On the other hand, Pd(L3)2, where L3 is 3-amino-6(7)-chloroquinoxaline-2-carbonitrile N1,N4-dioxide, resulted in vitro more potent cytotoxin in hypoxia (P = 5.0 μM) than the corresponding free ligand (P = 9.0 μM) and tirapazamine (P = 30.0 μM), the first bioreductive cytotoxic drug introduced into clinical trials. In addition, it showed a very good selective cytotoxicity in hypoxic conditions, being non-cytotoxic in normoxia. Its hypoxic cytotoxicity relationship value, HCR, was of the same order than those of other hypoxia selective cytotoxins (i.e., Mitomycine C, Misonidazole and the N-oxide RB90740). Interaction of the complexes with plasmid DNA in normoxia showed dose dependent ability to relax the negative supercoiled forms via different mechanisms. Pd(L2)2 introduced a scission event in supercoiled DNA yielding the circular relaxed form. Meanwhile, both Pd(L1)2 and Pd(L3)2 produced the loss of negative supercoils rendering a family of topoisomers with reduced electrophoretic mobility. Pd(L3)2 showed a more marked effect than Pd(L1)2. Indeed, for the highest doses assayed, Pd(L3)2 was even able to introduce positive supercoils on the plasmid DNA.  相似文献   

13.
Vanadium compounds show interesting biological and pharmacological properties. Some of them display insulin-mimetic effects and others produce anti-tumor actions. The bioactivity of vanadium is present in inorganic species like the vanadyl(IV) cation or vanadate(V) anion. Nevertheless, the development of new vanadium derivatives with organic ligands which improve the beneficial actions and decrease the toxic effects is of great interest. On the other hand, the mechanisms involved in vanadium bioactivity are still poorly understood. A new vanadium complex of the vanadyl(IV) cation with the disaccharide trehalose (TreVO), Na(6)[VO(Tre)(2)].4H(2)O, here reported, shows interesting insulin-mimetic properties in two osteoblast cell lines, a normal one (MC3T3E1) and a tumoral one (UMR106). The complex affected the proliferation of both cell lines in a different manner. On tumoral cells, TreVO caused a weak stimulation of growth at 5 microM but it inhibited cell proliferation in a dose-response manner between 50 and 100 microM. TreVO significantly inhibited UMR106 differentiation (15-25% of basal) in the range 5-100 microM. On normal osteoblasts, TreVO behaved as a mitogen at 5-25 microM. Different inhibitors of the MAPK pathway blocked this effect. At higher concentrations (75-100 microM), the complex was a weak inhibitor of the MC3T3E1 proliferation. Besides, TreVO enhanced glucose consumption by a mechanism independent of the PI3-kinase activation. In both cell lines, TreVO stimulated the ERK phosphorylation in a dose- and time-dependent manner. Different inhibitors (PD98059, wortmannin, vitamins C and E) partially decreased this effect, which was totally inhibited by their combination. These results suggest that TreVO could be a potential candidate for therapeutic treatments.  相似文献   

14.
15.
Vanadium associates with serum transferrin of rats administered vanadyl(IV) sulfate or ammonium metavanadate(V) by gastric intubation. Low molecular weight species account for only 3% of the vanadium present in plasma. The element distributes between the two major isotransferrins in proportion to their concentrations. Rat apotransferrin binds both vanadium(IV) and vanadium(V), forming 2:1 metal-protein complexes in both instances. Although the two isotransferrins apparently differ in their physiological properties, they exhibit identical vanadyl(IV) (VO2+) EPR spectra, indicating identical or very similar metal binding sites for both proteins. In contrast to other transferrins, the two sites of the rat protein are spectroscopically indistinguishable and exhibit a VO2+ EPR spectrum similar to that of the C-terminal metal binding site of human serum transferrin. VO2+ EPR signals are observed with liver, spleen, and kidney tissue samples from animals maintained on a vanadium-supplemented diet. These signals arise from a specific intracellular VO2+ complex with the iron storage protein ferritin.  相似文献   

16.
The effect of vanadium oxides on living systems may involve the in vivo conversion of vanadate and vanadyl ions. The addition of 5 mM orthovanadate (VO4(3-), V(V)), a known inhibitor of the (Na,K)-ATPase, to yeast cells stopped growth. In contrast, the addition of 5 mM vanadyl (VO2+, V(IV) stimulated growth. Orthovanadate addition to whole cells is known to stimulate various cellular processes. In yeast, both ions inhibited the plasma membrane Mg2+ ATPase and were transported into the cell as demonstrated with [48V]VO4(3-) and VO2+. ESR spectroscopy has been used to measure the cell-associated paramagnetic vandyl ion, while 51V NMR has detected cell-associated diamagnetic vanadium (e.g. V(V)). Cells were exposed to both toxic (5 mM) and nontoxic (1 mM) concentrations of vanadate in the culture medium. ESR showed that under both conditions, vanadate became cell associated and was converted to vanadyl which then accumulated in the cell culture medium. 51V NMR studies showed the accumulation of new cell-associated vanadium resonances identified as dimeric vanadate and decavanadate in cells exposed to toxic amounts of medium vanadate (5 mM). These vanadate compounds did not accumulate in cells exposed to 1 mM vanadate. These studies confirm that the inhibitory form of vanadium usually observed in in vitro experiments is vanadate, in one or more of its hydrated forms. These data also support the hypothesis that the stimulatory form of vanadium usually observed in whole cell experiments is the vanadyl ion or one or more of its liganded derivatives.  相似文献   

17.
Vanadium complexes with quinoline ligands (1b-g) and pyridinone ligands (2b-d) were synthesized, and the effect of the length and shape of alkyl chains on the antiproliferative activity toward U937 cells was studied. For the synthesis of the vanadium complexes, quinoline and pyridinone ligands were prepared and then treated with VOSO(4) or VO(acac)(2). The vanadyl(IV) complexes were characterized by IR, ESR, and UV-vis spectroscopy and elemental analyses. The antiproliferative activity of 1a-g toward U937 cells showed little dependence on the length and shape of the alkyl chain. In contrast, a good correlation was found between the IC(50) values and partition coefficients (logP) values of 2a-c. Among them, 2c showed the highest inhibitory activity, and its IC(50) value was smaller than that of cisplatin. The apoptosis-inducing ability of 2b and 2c was supported by annexin V-propidium iodide staining experiments and agarose gel electrophoresis analysis. Inhibitors of caspase-3, -8, and -9 did not affect the antiproliferative activity of 2c, indicating that the apoptosis induced by 2c was via a caspase-independent pathway.  相似文献   

18.
Reaction of the multifunctional phenolic ligands 2,5-bis[N,N-bis(carboxymethyl)aminomethyl]hydroquinone (H6cahq), 2,2'-bis[N,N-bis(carboxymethyl)aminomethyl]-4,4'-isopropylidenediphen ol(H6capd),2,2',2'-tris[N,N-bis(carboxymethyl)aminomethyl]-1,1 ,1-tris(4-hydroxyphenyl)ethane (H9catp) and the monofunctional 2-[N,N-bis(carboxymethyl)aminomethyl]-4-carboxyphenol (H3cacp), with VOSO4 and NaVO3 affords the oxo-bridged mixed-valence vanadium(IV/V) Na6[(VO)4(mu-O)2(mu-cahq)2] x Na2SO4 x 20H2O (1), HnNa(3-n)[(VO)2(mu-O)(mu-cacp)2] (2), HnNa(3-n)[(VO)4(mu-O)2(mu-capd)2] (3), HnNa(9-n)[(VO)6(mu-O)3(mu3-catp)2] (4). In addition to the synthesis, we report the infrared, magnetic, optical and electrochemical properties of these complexes. The hydrolytic stability at different pH values was also investigated using visible spectroscopy.  相似文献   

19.
Inhibition of (Na,K)-ATPase by tetravalent vanadium   总被引:1,自引:0,他引:1  
Vanadyl, the tetravalent state of vanadium and a divalent cation, VO2+, was a relatively powerful inhibitor of highly purified membrane-bound sodium and potassium ion transport adenosine triphosphatase. The sensitivity of the ATPase activity to vanadyl characteristically correlated positively with the specific activity of the enzyme preparation. Inhibition ranged from nearly complete inhibition at less than 5 microM vanadyl for some of the purest fractions (specific activity approximately 45 mumol/min/mg of protein) to no observable inhibition at 300 microM vanadyl in one crude preparation of the enzyme with a specific activity of 10 mumol/min/mg of protein. The level of free vanadyl was reduced by incubation with these membranes, but this reduction was not sufficient to account for the low sensitivity to vanadyl observed in crude preparations. A reduction in specific activity by partial inactivation of a sensitive preparation by treatment with FeCl3 and ascorbate reduced its sensitivity to vanadyl. Anionic ligands of the enzyme, vanadate or ATP, increased the rate of recovery from inhibition after chelation of free vanadyl. At pH 6.1, the inhibition was characteristically fully reversible (t1/2 approximately 10 min), whereas at pH 8.1 it was stable for hours. The degree and stability of enzyme inhibition by vanadyl increased for several hours during incubation of the vanadyl-enzyme mixture, and at pH 6.1 the properties of the inhibitor itself also changed with time. Preincubation of the ion at that pH for 5 h before addition of the enzyme produced a more stable inhibition. The time- and pH-dependent changes in the degree and stability of enzyme inhibition probably relate to the complex chemistry of the vanadyl ion in solution.  相似文献   

20.
Some of vanadyl complexes have shown potential to inhibit RNase activity by acting as transition state analogue, while at the same time not inhibiting DNase. To gain an insight into the interaction of protein with vanadate (VO3-) and vanadyl (VO2+) ions, the present study was designed to examine the binding of ribonuclase A (RNase A) with NaVO3 and VOSO4 in aqueous solution at physiological pH with metal ion concentrations of 0.001 mM to 1 mM, and protein concentration of 2% w/v. Absorption spectra and Fourier transform infrared (FTIR) spectroscopy with self-deconvolution and second derivative resolution enhancement were used to determine the cation binding mode, association constant and the protein secondary structure in the presence of vanadate and vanadyl ions in aqueous solution. Spectroscopic results show that an indirect metal ion interaction occurs with the polypeptide C = O, C-N (via H2O) with overall binding constants of K(VO3-) = 3.93x10(2) M(-1) and K(VO2+) = 4.20x10(3) M(-1). At high metal ion concentrations, major protein secondary structural changes occur from that of the alpha-helix 29% (free enzyme) to 23-24%; beta-sheet (pleated and anti) 50% (free enzyme) to 64-66% and turn 21% (free enzyme) to 10-12% in the metal-RNase complexes. The observed structural changes indicate a partial protein unfolding in the presence of high metal ion concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号