首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To investigate the mechanism by which the Bordetella BvgAS phosphorelay controls expression of at least three distinct phenotypic phases, we isolated and characterized two B. pertussis mutants that were able to express Bvg- and Bvg(i) phase phenotypes but not Bvg+ phase phenotypes. In both cases, the mutant phenotype was due to a single nucleotide change in bvgA resulting in a single amino acid substitution in BvgA. In vitro phosphorylation assays showed that BvgA containing the T194M substitution was significantly impaired in its ability to use either BvgS or acetyl phosphate as a substrate for phosphorylation. Binding studies indicated that this mutant protein was able to bind an oligonucleotide containing a high-affinity BvgA binding site in a manner similar to wild-type BvgA, but was defective for binding the fhaB promoter in the absence of RNA polymerase (RNAP). By contrast, BvgA containing the R152H substitution had wild-type phosphorylation properties but was severely defective in its ability to bind either the high-affinity BvgA binding site-containing oligonucleotide or the fhaB promoter by itself. Both mutant BvgA proteins were able to bind the fhaB promoter in the presence of RNAP however, demonstrating the profound effect that RNAP has on stabilizing the ternary complexes between promoter DNA, BvgA and RNAP. Our results are consistent with the hypothesis that BvgAS controls expression of multiple phenotypic phases by adjusting the intracellular concentration of BvgA-P and they demonstrate the additive nature of BvgA binding site affinity and protein-protein interactions at different Bvg-regulated promoters.  相似文献   

3.
4.
5.
6.
Expression of virulence-associated genes in Bordetella pertussis is under the control of the pleiotropic regulator BvgA. Although previous studies have identified recognition sequences for BvgA in several promoter regions, their structures have not been clearly characterized. We show that the BvgA binding sites within the bvgp(1) and cyaA promoters consist of inverted repeats and suggest that inverted-repeat motifs may represent the recognition elements for DNA-BvgA interaction.  相似文献   

7.
8.
9.
10.
The BvgAS system controls the expression of most virulence factors in Bordetella pertussis. Recently, we identified an orthologous system in the related human pathogen Bordetella holmesii. However, while we found that the orthologous histidine kinases BvgS could be functionally exchanged between the two species, the B. holmesii response regulator BvgA(BH) could not substitute for its B. pertussis counterpart in vivo and, accordingly, was not able to bind to B. pertussis virulence promoters in vitro. Here we show that a hybrid response regulator consisting of the B. pertussis derived DNA-binding output domain of BvgA(BP) combined with the B. holmesii receiver domain binds to BvgA(BP) regulated virulence promoters of B. pertussis in vitro and is functional in B. pertussis in vivo. This shows that the inability of BvgA(BH) to complement BvgA(BP) in B. pertussis is due to the small number of sequence variations present in its output domain. However, by mutation analysis we show that four amino acid exchanges present in the helix-turn-helix motif of BvgA(BH) as compared to BvgA(BP) are not the only reason for its inability to substitute for BvgA(BP) but additional mutations present in the output domain must play a role.  相似文献   

11.
12.
13.
14.
Despite the presence of highly conserved signalling modules, significant cross-communication between different two-component systems has only rarely been observed. Domain swapping and the characterization of liberated signalling modules enabled us to characterize in vitro the protein domains that mediate specificity and are responsible for the high fidelity in the phosphorelay of the unorthodox Bvg and Evg two-component systems. Under equimolar conditions, significant in vitro phosphorylation of purified BvgA and EvgA proteins was only obtained by their histidine kinases, BvgS and EvgS respectively. One hybrid histidine kinase consisting of the BvgS transmitter and HPt domains and of the EvgS receiver domain (BvgS-TO-EvgS-R) was able to phosphorylate BvgA but not EvgA. In contrast, the hybrid protein consisting of the BvgS transmitter and the EvgS receiver and HPt domains (BvgS-T-EvgS-RO) was unable to phosphorylate BvgA but efficiently phosphorylated EvgA. These results demonstrate that the C-terminal HPt domains of the sensor proteins endow the unorthodox two-component systems with a high specificity for the corresponding regulator protein. In the case of the response regulators, the receiver but not the output domains contribute to the specific interaction with the histidine kinases, because a hybrid protein consisting of the EvgA receiver and the BvgA output domain could only be phosphorylated by the EvgS protein.  相似文献   

15.
Polysaccharide (PS) capsules are important virulence determinants for many bacterial pathogens. Bordetella pertussis, the agent of whooping cough, produces a surface associated microcapsule but its role in pertussis pathogenesis remained unknown. Here we showed that the B. pertussis capsule locus is expressed in vivo in murine lungs and that absence of the membrane-associated protein KpsT, involved in the transport of the PS polymers across the envelope, but not the surface-exposed PS capsule itself, affects drastically B. pertussis colonization efficacy in mice. Microarray analysis revealed that absence of KpsT in B. pertussis resulted in global down-regulation of gene expression including key virulence genes regulated by BvgA/S, the master two-component system. Using a BvgS phase-locked mutant, we demonstrated a functional link between KpsT and BvgA/S-mediated signal transduction. Whereas pull-down assays do not support physical interaction between BvgS sensor and any of the capsule locus encoded proteins, absence of KpsT impaired BvgS oligomerization, necessary for BvgS function. Furthermore, complementation studies indicated that instead of KpsT alone, the entire PS capsule transport machinery spanning the cell envelope likely plays a role in BvgS-mediated signal transduction. Our work thus provides the first experimental evidence of a role for a virulence-repressed gene in pertussis pathogenesis.  相似文献   

16.
Biophysical and biochemical properties of signalling proteins or domains derived from the unorthodox EvgAS and BvgAS two-component phosphorelay systems of Escherichia coli and Bordetella pertussis were investigated. Oligomerization of the effector proteins EvgA and BvgA and of truncated EvgS and BvgS derived signalling proteins containing the receiver and histidine containing phosphotransfer (HPt) domains or comprising only the HPt domains were characterized by native gel electrophoresis, gel permeation experiments and analytical ultracentrifugation. The results obtained by the different methods are consistent with non-phosphorylated EvgA and BvgA proteins being dimers in solution with a dissociation constant significantly below 1 microM. In contrast, all sensor derived domains of EvgS and BvgS were observed to be monomers in vitro. No indications for a phosphorylation induced stimulation of oligomerization of the C-terminal histidine kinase domains could be detected. In agreement with these data, surface plasmon resonance studies revealed a 2:1 stoichiometry in the interaction of EvgA with the immobilized EvgS HPt domain and an affinity constant of 1. 24x10(6) M(-1).  相似文献   

17.
The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS.  相似文献   

18.
19.
The DNA sequence of the central regulatory locus vir of Bordetella pertussis predicts that three gene products, BvgA, BvgB, and BvgC, are encoded. Features of the predicted primary structures of these proteins and their homology to other two-component systems suggest that BvgA is located in the cytoplasm, BvgB is located in the periplasm, and BvgC spans the inner membrane. We have used gene fusions to the phoA and lacZ genes of Escherichia coli to investigate the subcellular localization and membrane topology of these proteins. PhoA fusion proteins were also purified and used to raise antibodies that allowed visualization of the vir-encoded polypeptides by Western immunoblotting. Our results have largely confirmed the predictions of the DNA sequence, with the exception that BvgB and BvgC were found to constitute one larger protein that was homologous to the sensor class of two-component systems. We propose that this protein be named BvgS (for sensor) and that its gene be named bvgS.  相似文献   

20.
We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos‐tag? to separate the response regulator BvgA from its phosphorylated counterpart BvgA~P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non‐permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non‐permissive conditions. Our results provide the first direct evidence that levels of BvgA~P in vivo correspond temporally to the expression of early and late BvgA‐regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two‐component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号