首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In order to define a consensus binding sequence for the response regulator BvgA, we have undertaken a systematic analysis of contributions made by each nucleotide within the heptad half-sites that are present in an inverted orientation at the promoter for the fha operon. Using in vitro binding assays, we examined the full complement of 21 single point mutations symmetrically arranged in this heptad repeat. Both gel shift and nitrocellulose filter-binding assays provided evidence that nucleotides at positions 3 (thymidine), 4 (cytosine) and 7 (adenine) in the binding heptad contribute substantially to sequence-specific recognition by BvgA. Furthermore, a T to A conversion at position 6 reduced binding. Selected binding site mutations were introduced into a modified fha promoter and examined for their effects on BvgA activation of promoter activity in vivo. Only those substitutions most severely affecting binding in vitro affected promoter activity in vivo. The in vivo effects of substitutions that had a significant effect on binding in vitro but did not severely affect in vivo promoter activity under standard culture conditions could be detected in vivo either in combination with additional substitutions or from their effect on the sensitivity of the mutant promoters to modulation by magnesium sulphate.  相似文献   

3.
4.
The effect of structural changes on the functions of the RNA component (M1 RNA) of ribonuclease P (RNase P) of Escherichia coli has been studied using the thermosensitive mutants of the rnpB gene. One of the mutants, ts709, has two G--A substitutions at positions 89 and 365 from the 5' end of M1 RNA. Of these substitutions, the one at position 89 from the 5' end is responsible for the phenotype of this mutant. Although the RNase P activity of ts709 is thermosensitive, the mutant M1 RNA has the same catalytic activity as the wild-type RNA. M1 RNA of another mutant, ts2418, has a G--A substitution at position 329. This mutant RNA has extremely low catalytic activity. The upstream mutational site of ts709 appears to play a role in the association with the protein subunit, whereas the mutational site of ts2418 is related to the catalytic function of M1 RNA.  相似文献   

5.
The AB and GH regions of the alpha-chain are located in spatial proximity and contain a cluster of intermolecular contact residues of the sickle hemoglobin (HbS) fiber. We have examined the role of dynamics of AB/GH region on HbS polymerization through simultaneous replacement of non-contact Ala(19) and Ala(21) of the AB corner with more flexible Gly or rigid alpha-aminoisobutyric acid (Aib) residues. The polymerization behavior of HbS with Aib substitutions was similar to the native HbS. In contrast, Gly substitutions inhibited HbS polymerization. Molecular dynamics simulation studies of alpha-chains indicated that coordinated motion of AB and GH region residues present in native (Ala) as well as in Aib mutant was disrupted in the Gly mutant. The inhibitory effect due to Gly substitutions was further explored in triple mutants that included mutation of an inter-doublestrand contact (alphaAsn(78) --> His or Gln) at the EF corner. Although the inhibitory effect of Gly substitutions in the triple mutant was unaffected in the presence of alphaGln(78), His at this site almost abrogated its inhibitory potential. The polymerization studies of point mutants (alphaGln(78) --> His) indicated that the inhibitory effect due to Gly substitutions in the triple mutant was synergistically compensated for by the polymerization-enhancing activity of His(78). Similar synergistic coupling, between alphaHis(78) and an intra-double-strand contact point (alpha16) mutation located in the AB region, was also observed. Thus, two conclusions are made: (i) Gly mutations at the AB corner inhibit HbS polymerization by perturbing the dynamics of the AB/GH region, and (ii) perturbations of AB region (through changes in dynamics of the AB/GH region or abolition of a specific fiber contact site) that influence HbS polymerization do so in concert with alpha78 site at the EF corner. The overall results provide insights about the interaction-linkage between distant regions of the HbS tetramer in fiber assembly.  相似文献   

6.
To identify the role of the downstream region of a hut promoter in regulation of the Bacillus subtilis hut operon, three single-base substitutions (+9G-->A, +14C-->T, and +23T-->G) were introduced into the hut operon. Analysis of expression of the hut operon containing each of these three single-base substitutions and the hut-lacZ fusions with the single-base substitutions at position +14 showed that the position at +14 and probably the position at +23 were required for amino acid repression at the hut promoter, while the position at +14 was not required for catabolite repression at the hut promoter. The position at +9 was required for a histidine-dependent increase of activity of the hut promoter. Analysis of expression of the hut-lacZ fusions and the hut operon in the codY mutant indicated that the position at +14 and probably the position at +23 were involved in CodY-mediated amino acid repression at the hut promoter and that CodY was not required for catabolite repression at the hut promoter.  相似文献   

7.
A viable insertion mutant of the Sabin strain of type 1 poliovirus was constructed. The mutant carried an insertion sequence of 72 nucleotides at nucleotide position 702 in the 5' non-coding region (742 nucleotides long) of the genome of the Sabin strain. This mutant showed a small-plaque phenotype, as compared with the parental virus. Indeed, the final yield of the mutant in a single cycle of infection was tenfold fewer than that of the parental virus. Many large-plaque variants that are easily generated from the insertion mutant appeared to regain efficient viral replication and have single nucleotide changes. All nucleotide changes observed were limited to within three nucleotides of an AUG sequence in the insertion sequence. The result indicates strongly that the AUG sequence itself in this genome region functions in reducing the plaque size of the parental Sabin type 1 virus. The insertion mutant with a small-plaque phenotype may be the first in vitro mutant of poliovirus whose viability is lowered only by a primary sequence inserted into the 5' non-coding region of the genome. Base substitutions to alter the AUG sequence should largely be the result of errors of the virus-specific replicase, since variants with base substitutions must be subject to only minimum selection pressure. Accordingly, nucleotide sequence analysis of the genome region containing the AUG sequence was performed on a number of genomes of large-plaque variants to investigate types of nucleotide substitutions caused by characteristic errors in RNA replication. Only one transversion mutation was detected in the genomes of 44 independently isolated large-plaque variants with single base changes in the AUG sequence. This result suggests strongly that transition mutations occur predominantly as nucleotide substitutions caused by characteristic errors of poliovirus replicase.  相似文献   

8.
Starrett DJ  Falke JJ 《Biochemistry》2005,44(5):1550-1560
The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two substitutions (E308Q and E463Q) preserved normal kinase activation in vitro but blocked cellular chemotaxis in vivo, suggesting that these sites lie within the docking site of an adaptation enzyme, CheR or CheB. Overall, this study highlights the importance of electrostatics in signal transduction and regulation of kinase activity by the cytoplasmic domain of the aspartate receptor.  相似文献   

9.
The presence of allelic sequence variations in DNA fragments can be easily detected by measuring the extent of DNA strand exchange between test double-stranded PCR products (target) and labeled standard double-stranded PCR products (probe). Under selected hybridization conditions, sequences identical to the probe decreased the formation of double-labeled hybrid, whereas differing sequences were not efficient enough to compete with the regeneration of the probe. A single base substitution in the target DNA increased the percentage of remaining double-labeled probe. A general procedure involving denaturation and hybridization in solution under different temperature conditions or using different probes enabled sequence identification. The degree of regeneration of double-labeled probe was determined using a bioluminescent assay. We evaluated the specificity of this method with two probes (108 and 131 bp) and several targets with different base substitutions.  相似文献   

10.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

11.
To assess the role of naturally occurring basic amino acid substitutions in the V3 loop of human immunodeficiency virus type 1 (HIV-1) subtype E on viral coreceptor usage and cell tropism, we have constructed a panel of chimeric viruses with mutant V3 loops of HIV-1 subtype E in the genetic background of HIV-1LAI. The arginine substitutions naturally occurring at positions 8, 11, and 18 of the V3 loop in an HIV-1 subtype E X4 strain were systematically introduced into that of an R5 strain to generate a series of V3 loop mutant chimera. These chimeric viruses were employed in virus infectivity assays using HOS-CD4 cells expressing either CCR5 or CXCR4, peripheral blood mononuclear cells, T-cell lines, or macrophages. The arginine substitution at position 11 of the V3 loop uniformly caused the loss of infectivity in HOS-CD4-CCR5 cells, indicating that position 11 is critical for utilization of CCR5. CXCR4 usage was conferred by a minimum of two arginine substitutions, regardless of combination, whereas arginine substitutions at position 8 and 11 were required for T-cell line tropism. Nonetheless, macrophage tropism was not conferred by the V3 loop of subtype E R5 strain per se. We found that the specific combinations of amino acid changes in HIV-1 subtype E env V3 loop are critical for determining viral coreceptor usage and cell tropism. However, the ability to infect HOS-CD4 cells through either CXCR4 or CCR5 is not necessarily correlated with T-cell or macrophage tropism, suggesting that cellular tropism is not dictated solely by viral coreceptor utilization.  相似文献   

12.
13.
To expand the functionality of lipase from Proteus vulgaris (PVL) we have used error-prone PCR and DNA shuffling methods to create PVL mutants with improved lipase activity. One desirable mutant with three amino acids substitutions was obtained. The mutated lipase was purified and characterized. The activity of the mutant lipase EF3.3 was 3.5 times higher than that of the wild-type (WT-PVL). The mutational effect is interpreted according to a simulated three-dimensional structure for the mutant lipase. Amino acid substitution at position 102 was determined to be critical for lipase activity, while the residue at positions 197 and 229 had only marginal effect.  相似文献   

14.
Two distinct spontaneous variants of the murine anti-digoxin hybridoma 26-10 were isolated by fluorescence-activated cell sorting for reduced affinity of surface antibody for antigen. Nucleotide and partial amino acid sequencing of the variant antibody variable regions revealed that 1 variant had a single amino acid substitution: Lys for Asn at heavy chain position 35. The second variant antibody had 2 heavy chain substitutions: Tyr for Asn at position 35, and Met for Arg at position 38. Mutagenesis experiments confirmed that the position 35 substitutions were solely responsible for the markedly reduced affinity of both variant antibodies. Several mutants with more conservative position 35 substitutions were engineered to ascertain the contribution of Asn 35 to the binding of digoxin to antibody 26-10. Replacement of Asn with Gln reduced affinity for digoxin 10-fold relative to the wild-type antibody, but maintained wild-type fine specificity for cardiac glycoside analogues. All other substitutions (Val, Thr, Leu, Ala, and Asp) reduced affinity by at least 90-fold and caused distinct shifts in fine specificity. The Ala mutant demonstrated greatly increased relative affinities for 16-acetylated haptens and haptens with a saturated lactone. The X-ray crystal structure of the 26-10 Fab in complex with digoxin (Jeffrey PD et al., 1993, Proc Natl Acad Sci USA 90:10310-10314) reveals that the position 35 Asn contacts hapten and forms hydrogen bonds with 2 other contact residues. The reductions in affinity of the position 35 mutants for digoxin are greater than expected based upon the small hapten contact area provided by the wild-type Asn. We therefore performed molecular modeling experiments which suggested that substitution of Gln or Asp can maintain these hydrogen bonds whereas the other substituted side chains cannot. The altered binding of the Asp mutant may be due to the introduction of a negative charge. The similarities in binding of the wild-type and Gln-mutant antibodies, however, suggest that these hydrogen bonds are important for maintaining the architecture of the binding site and therefore the affinity and specificity of this antibody. The Ala mutant eliminates the wild-type hydrogen bonding, and molecular modeling suggests that the reduced side-chain volume also provides space that can accommodate a congener with a 16-acetyl group or saturated lactone, accounting for the altered fine specificity of this antibody.  相似文献   

15.
Targeting induced local lesions in genomes (TILLING) is a reverse-genetic method for identifying point mutations in chemically mutagenized populations. For functional genomics, it is ideal to have a stable collection of heavily mutagenized lines that can be screened over an extended period of time. However, long-term storage is impractical for Drosophila, so mutant strains must be maintained by continual propagation of live cultures. Here we evaluate a strategy in which ethylmethane sulfonate (EMS) mutagenized chromosomes were maintained as heterozygotes with balancer chromosomes for >100 generations before screening. The strategy yielded a spectrum of point mutations similar to those found in previous studies of EMS-induced mutations, as well as 2.4% indels (insertions and deletions). Our analysis of 1887 point mutations in 148 targets showed evidence for selection against deleterious lesions and differential retention of lesions among targets on the basis of their position relative to balancer breakpoints, leading to a broad distribution of mutational densities. Despite selection and differential retention, the success of a user-funded service based on screening a large collection several years after mutagenesis indicates sufficient stability for use as a long-term reverse-genetic resource. Our study has implications for the use of balancer chromosomes to maintain mutant lines and provides the first large-scale quantitative assessment of the limitations of using breeding populations for repositories of genetic variability.  相似文献   

16.
17.
A Betz  J Hofsteenge  S R Stone 《Biochemistry》1992,31(19):4557-4562
Site-specific substitutions of the first five amino acids of the thrombin inhibitor hirudin have been made and the effects of these substitutions on the kinetics of formation of the thrombin-hirudin complex evaluated. The effects of different substitutions of Val1 indicate that nonpolar interactions play a major role in the binding of this residue. In the second position (Val2), polar amino acids were better accommodated than in the first. The mutant with arginine in the second position bound particularly well to thrombin; its dissociation constant was 9-fold lower than that of wild-type recombinant hirudin. Comparison of the effects of single and double mutations involving Val1 and Val2 indicates that there was no cooperativity in the binding of these two residues. Elimination of the hydrophobic interactions made by the aromatic ring of Tyr3 of hirudin resulted in a large loss of binding energy (12.7 kJ mol-1). Replacement of Thr4 of hirudin by serine and alanine suggested that both the gamma-methyl and the hydroxyl group of the threonine were important in the stabilization of the thrombin-hirudin complex. Replacement of Asp5 of hirudin by alanine and glutamate caused about the same loss in binding energy (5 kJ mol-1). The effects of site-specific substitutions are discussed in terms of the crystal structure of the thrombin-hirudin complex. Molecular modeling provided plausible explanations for many of the observed effects. For instance, such studies suggested that the improved binding of the mutant with arginine in the second position could be due to an interaction of the arginine with the primary specificity pocket.  相似文献   

18.
The role of aspartic acid-49 (Asp-49) in the active site of porcine pancreatic phospholipase A2 was studied by recombinant DNA techniques: two mutant proteins were constructed containing either glutamic acid (Glu) or lysine (Lys) at position 49. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions, in particular for the lysine mutant, but the affinity for substrate analogues is hardly affected. Extensive purification of naturally occurring Lys-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein that was nearly inactive. Inhibition studies showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself has no enzymatic activity. Our results indicate that Asp-49 is essential for the catalytic action of phospholipase A2. The importance of Asp-49 was further evaluated by comparison of the primary sequences of 53 phospholipases A2 and phospholipase homologues showing that substitutions at position 49 are accompanied by structural variations of otherwise conserved residues. The occurrence of several nonconserved substitutions appeared to be a general characteristic of nonactive phospholipase A2 homologues.  相似文献   

19.
The orf-A (orf-2) gene of feline immunodeficiency virus (FIV) is a small open reading frame predicted to encode a 77-amino-acid protein that contains putative domains similar to those of the ungulate lentiviral Tat protein. Orf-A is reported to be critical for efficient viral replication in vitro and in vivo. A series of FIV-pPPR-derived proviruses with in-frame deletions and point mutations within orf-A were constructed and tested for replication in feline lymphoid cells. Orf-A mutant proviruses were also tested for viral gene and protein expression, viral particle formation, and virion infectivity. Deletions within orf-A severely restricted FIV replication in feline peripheral blood mononuclear cells (PBMC) and interleukin-2-dependent T-cell lines. In addition, substitutions of alanines for leucines in the putative leucine-rich domain, for cysteines in the putative cysteine-rich domain, and for a tryptophan at position 43 in Orf-A restricted the replication of FIV mutants. Deletions and point mutations in orf-A imposed a small effect or no effect on FIV long-terminal-repeat-driven viral gene expression and had no effect on viral protein expression. However, release of cell-free, virion-associated viral RNA in supernatants from cells transfected with orf-A mutant proviruses was severely restricted but was rescued by cotransfection with a wild-type Orf-A expression vector. In addition, virions derived from orf-A mutant proviruses expressed reduced infectivity for feline PBMC. Our findings suggest that Orf-A functions involve multiple steps of the FIV life cycle including both virion formation and infectivity. Furthermore, these observations suggest that Orf-A represents an FIV-encoded analog more similar to the accessory gene vpr, vpu, or nef than to the regulatory gene tat encoded by the primate lentiviruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号