首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Y Jiang  J R Broach 《The EMBO journal》1999,18(10):2782-2792
Tor proteins, homologous to DNA-dependent protein kinases, participate in a signal transduction pathway in yeast that regulates protein synthesis and cell wall expansion in response to nutrient availability. The anti-inflammatory drug rapamycin inhibits yeast cell growth by inhibiting Tor protein signaling. This leads to diminished association of a protein, Tap42, with two different protein phosphatase catalytic subunits; one encoded redundantly by PPH21 and PPH22, and one encoded by SIT4. We show that inactivation of either Cdc55 or Tpd3, which regulate Pph21/22 activity, results in rapamycin resistance and that this resistance correlates with an increased association of Tap42 with Pph21/22. Furthermore, we show Tor-dependent phosphorylation of Tap42 both in vivo and in vitro and that this phosphorylation is rapamycin sensitive. Inactivation of Cdc55 or Tpd3 enhances in vivo phosphorylation of Tap42. We conclude that Tor phosphorylates Tap42 and that phosphorylated Tap42 effectively competes with Cdc55/Tpd3 for binding to the phosphatase 2A catalytic subunit. Furthermore, Cdc55 and Tpd3 promote dephosphorylation of Tap42. Thus, Tor stimulates growth-promoting association of Tap42 with Pph21/22 and Sit4, while Cdc55 and Tpd3 inhibit this association both by direct competition and by dephosphorylation of Tap42. These results establish Tap42 as a target of Tor and add further refinement to the Tor signaling pathway.  相似文献   

8.
9.
10.
In Saccharomyces cerevisiae, Pph21 and Pph22 are the two catalytic subunits of type 2A phosphatase (PP2Ac), and Sit4 is a major form of 2A-like phosphatase. The function of these phosphatases requires their association with different regulatory subunits. In addition to the conventional regulatory subunits, namely, the A and B subunits for Pph21/22 and the Sap proteins for Sit4, these phosphatases have been found to associate with a protein termed Tap42. In this study, we demonstrated that Sit4 and PP2Ac interact with Tap42 via an N-terminal domain that is conserved in all type 2A and 2A-like phosphatases. We found that the Sit4 phosphatase in the sit4-102 strain contains a reverse-of-charge amino acid substitution within its Tap42 binding domain and is defective for formation of the Tap42-Sit4 complex. Our results suggest that the interaction with Tap42 is required for the activity as well as for the essential function of Sit4 and PP2Ac. In addition, we showed that Tap42 is able to interact with two other 2A-like phosphatases, Pph3 and Ppg1.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc13 localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc13 localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号