首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chimeric oligodeoxyribonucleotides where the phosphodiester linkage -C3'-O-PO2--O-CH2-C4'- of DNA is substituted by the amide linkage -C3'-CH2-CH*(CH3)-CO-NH-CH2-C4' (*either R or S stereochemistry) have been prepared and their binding to RNA targets have been investigated. Incorporation of a single amide unit increases the Tm by approximately 1.4-1.9 degrees C. Circular dichroic spectra of these modified duplexes are similar to the wildtype DNA/RNA.  相似文献   

2.
Transcription termination factor rho is an RNA-DNA helicase   总被引:32,自引:0,他引:32  
C A Brennan  A J Dombroski  T Platt 《Cell》1987,48(6):945-952
  相似文献   

3.
The syntheses and RNA cleavage efficiencies of a new series of oligonucleotide conjugates of Cu(II)-serinol-terpyridine and 1,3-propanediol are reported. These reagents, termed ribozyme mimics, were designed such that they would yield multiple unpaired RNA residues directly opposite the site of the RNA cleavage catalyst upon ribozyme mimic-RNA duplex formation. This design effect was implemented using the 1,3-propanediol linker 3, which mimics the three-carbon spacing between the 5'- and 3'-hydroxyls of a natural nucleotide. Incorporation of one or more of these 1,3-propanediol linkers at positions directly adjacent to the serinol-terpyridine modification in the ribozyme mimic DNA strand resulted in cleavage at multiple phosphates in a complementary 31-mer RNA target sequence. The linkers effectively created artificial mismatches in the RNA-DNA duplexes, rendering the opposing RNA residues much more susceptible to cleavage via the transesterification/hydrolysis pathway. The RNA cleavage products produced by the various mimics correlated directly with the number and locations of the linkers in their DNA strands, and the most active ribozyme mimic in the series exhibited multiple turnover in the presence of excess 31-mer RNA target.  相似文献   

4.
Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA-DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA-DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication.  相似文献   

5.
Oligonucleotide analogues were synthesized whose internucleoside linker contains an amide bond and a methylamino group (C3'-NH-CO-CH2-N(CH3)-C5'). Melting curves for duplexes formed by modified oligonucleotides and natural oligonucleotides complementary to them were measured, and the melting temperatures and thermodynamic parameters of duplex formation were calculated. The introduction of one modified dinucleoside linker into the oligonucleotide only slightly decreases the melting temperatures of these duplexes compared with unmodified ones. The CD spectra of modified duplexes were studied, and their spatial structures are discussed.  相似文献   

6.
7.
LNA is a bicyclic nucleic acid analogue that contains one or more 2'-O,4'-C methylene linkage(s), which effectively locks the furanose ring in a C3'-endo conformation. We report here the NMR solution structure of a nonamer LNA:RNA hybrid and a structural characterization of a nonamer LNA:DNA hybrid, where the LNA strands are composed entirely of LNA nucleotides. This is the first structural characterization of fully modified LNA oligonucleotides. The high-resolution structure reveals that the LNA:RNA hybrid adopts an almost canonical A-type duplex morphology. The helix axis is almost straight and the duplex geometry is regular. This shows that fully modified LNA oligomers can hybridize with complementary RNA and form duplexes within the Watson-Crick framework. The LNA:DNA hybrid structurally resembles an RNA:DNA hybrid as shown by determination of deoxyribose sugar puckers and analysis of NOESY NMR spectra.  相似文献   

8.
9.
Ohtani N  Tomita M  Itaya M 《The FEBS journal》2008,275(21):5444-5455
Junction ribonuclease (JRNase) recognizes the transition from RNA to DNA of an RNA-DNA/DNA hybrid, such as an Okazaki fragment, and cleaves it, leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. Although this JRNase activity was originally reported in calf RNase H2, some other RNases H have recently been suggested to possess it. This paper shows that these enzymes can also cleave an RNA-DNA/RNA heteroduplex in a manner similar to the RNA-DNA/DNA substrate. The cleavage site of the RNA-DNA/RNA substrate corresponds to the RNA/RNA duplex region, indicating that the cleavage activity cannot be categorized as RNase H activity, which specifically cleaves an RNA strand of an RNA/DNA hybrid. Examination of several RNases H with respect to JRNase activity suggested that the activity is only found in RNase HII orthologs. Therefore, RNases HIII, which are RNase HII paralogs, are distinguished from RNases HII by the absence of JRNase activity. Whether a substrate can be targeted by JRNase activity would depend only on whether or not an RNA-DNA junction consisting of one ribonucleotide and one deoxyribonucleotide is included in the duplex. In addition, although the activity has been reported not to occur on completely single-stranded RNA-DNA, it can recognize a single-stranded RNA-DNA junction if a double-stranded region is located adjacent to the junction.  相似文献   

10.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

11.
Recent studies on uniformly modified oligonucleotides containing 3'-NHP(O)(O-)O-5'internucleoside linkages (3'amidate) and alternatively modified oligonucleotides containing 3'-O(O-)(O)PNH-5'internucleoside linkages (5'amidate) have shown that 3'amidate duplexes, formed with DNA or RNA complementary strands, are more stable in water than those of the corresponding phosphodiesters. In contrast, 5'amidates do not form duplexes at all. There is no steric reason that the 5'amidate duplex should not form. We demonstrate that these differences arise from differential solvation of the sugar-phosphate backbones. By molecular dynamics calculations on models of 10mer single-stranded DNA and double-stranded DNA-RNA molecules, both with and without the phosphoramidate backbone modifications, we show that the single-stranded 3'amidate and 5'amidate backbones are equally well solvated, but the 5'amidate backbone is not adequately solvated in an A-form duplex. These results are supported by quantum chemical free energy of solvation calculations which show that the 3'amidate backbone is favored relative to the 5'amidate backbone.  相似文献   

12.
The fraction of the chloroplast DNA transcribed in the single celled alga Euglena has been determined by RNA-DNA hybridization. A vast excess of total cell RNA from cells which were rapidly dividing in the light was hybridized in liquid to [125I] — chloroplast DNA, and the resulting duplexes separated on hydroxyapatite columns. The contribution of DNA-DNA duplex formation was determined separately and was used to calculate that portion of the duplex which was actually a RNA-DNA hybrid. Sixteen percent of the single stranded chloroplast DNA forms a duplex with this RNA suggesting that 32 percent of the double stranded DNA molecule is being transcribed into RNA under these conditions of cell growth.  相似文献   

13.
14.
X Yang  X Han  C Cross  S Bare  Y Sanghvi  X Gao 《Biochemistry》1999,38(39):12586-12596
The solution structure of an antisense DNA.RNA hybrid duplex, d(CGCGTT-MMI-TTGCGC).r(GCGCAAAACGCG) (designated R4), containing an MMI backbone linker [3'-CH(2)N(CH(3))-O5'], is elucidated. The structural details of the MMI linker, its structural effects on the neighboring residues, and the molecular basis of the MMI effects are examined. The lipophilic N-methyl group of MMI is peripheral to the helix, assuming a conformation that is most stable with regard to the N-O torsion angle. The MMI linker promotes a 3'-endo conformation for the sugar moieties at both 3'- and 5'-adjacent positions and a backbone kink involving distant residues along the 3'-direction. Comparison of R4 with other analogous hybrid duplexes previously studied in this laboratory reveals a new family of low-energy helical conformations that can be accommodated in stable duplexes and a common feature of C3'-modified sugars for adopting a C3'-endo pucker. The results of these studies emphasize the interplay of several factors that govern the formation of stable hybrid duplexes and provide a basis for the understanding of the biological role of the MMI modifications, which are important building blocks for a family of promising chimeric antisense oligonucleotides.  相似文献   

15.
Symmetrical dimers of lipophilic intercalating chromophores linked by cation-containing chains have recently been shown to have broad-spectrum in vivo anticancer activity. We report the preparation and evaluation of a series of both symmetric and unsymmetric dimers of a variety of intercalating chromophores of varied DNA binding strength, including naphthalimides, acridines, phenazines, oxanthrenes and 2-phenylquinolines. The unsymmetrical dimers were prepared by sequential coupling of the chromophores to linkers with selectively protected primary terminal amines to ensure high yields and unequivocal product. Protection of the internal (secondary) amines as BOC derivatives was used to ensure complete structural specificity, and was also an aid to the purification of these very polar compounds. The growth inhibitory abilities (as IC(50) values) of the compounds in a range of cell lines showed that the nature of the linker chain was important, and independent of the nature of the chromophore, with compounds containing the dicationic linker [-(CH2)2NH(CH2)2NH(CH2)2-] being on average 30-fold more potent than the corresponding compounds containing the monocationic linker [-(CH2)3NMe(CH2)3-]. However, the chromophores also play a role in determining biological activity, with the cytotoxicities of symmetric and unsymmetric dicationic dimers correlating with the overall DNA binding abilities of the chromophores.  相似文献   

16.
We have characterized cloned His-tag human RNase H1. The activity of the enzyme exhibited a bell-shaped response to divalent cations and pH. The optimum conditions for catalysis consisted of 1 mM Mg(2+) and pH 7-8. In the presence of Mg(2+), Mn(2+) was inhibitory. Human RNase H1 shares many enzymatic properties with Escherichia coli RNase H1. The human enzyme cleaves RNA in a DNA-RNA duplex resulting in products with 5'-phosphate and 3'-hydroxy termini, can cleave overhanging single strand RNA adjacent to a DNA-RNA duplex, and is unable to cleave substrates in which either the RNA or DNA strand has 2' modifications at the cleavage site. Human RNase H1 binds selectively to "A-form"-type duplexes with approximately 10-20-fold greater affinity than that observed for E. coli RNase H1. The human enzyme displays a greater initial rate of cleavage of a heteroduplex-containing RNA-phosphorothioate DNA than an RNA-DNA duplex. Unlike the E. coli enzyme, human RNase H1 displays a strong positional preference for cleavage, i.e. it cleaves between 8 and 12 nucleotides from the 5'-RNA-3'-DNA terminus of the duplex. Within the preferred cleavage site, the enzyme displays modest sequence preference with GU being a preferred dinucleotide. The enzyme is inhibited by single-strand phosphorothioate oligonucleotides and displays no evidence of processivity. The minimum RNA-DNA duplex length that supports cleavage is 6 base pairs, and the minimum RNA-DNA "gap size" that supports cleavage is 5 base pairs.  相似文献   

17.
Triplex-forming oligonucleotides (TFOs) bind sequence-specifically in the major groove of double-stranded DNA. Cyclopropapyrroloindole (CPI), the electrophilic moiety that comprises the reactive subunit of the antibiotic CC-1065, gives hybridization-triggered alkylation at the N-3 position of adenines when bound in the minor groove of double-stranded DNA. In order to attain TFO-directed targeting of CPI, we designed and tested linkers to 'thread' DNA from the major groove-bound TFO to the minor groove binding site of CPI. Placement of an aromatic ring in the linker significantly enhanced the site-directed reaction, possibly due to a 'threading' mechanism where the aromatic ring is intercalated. All of the linkers containing aromatic rings provided efficient alkylation of the duplex target. The linker containing an acridine ring system, the strongest intercalator in the series, gave a small but clearly detectable amount of non-TFO-specific alkylation. An equivalent-length linker without an aromatic ring was very inefficient in DNA target alkylation.  相似文献   

18.
Two 1-nitro-9-aminoacridine dimers were prepared: one bearing a spermine flexible linking chain, compound 4, the other a rigid dipiperidine-type linker, compound 7. Both dimers elicited a higher affinity constant for DNA than the parent monomeric drug nitracrine 2. This affinity was several orders lower than what was found for other dimeric compounds having the same linkers and no nitro group on the acridine ring (3, 5, 6 and 8). Bisintercalation was evidenced for compound 4 by viscosimetric measurements. In the absence of dithiothreitol, an inhibitory effect of RNA synthesis in vitro was observed for all the tested compounds except 2 and 7. In the presence of dithiothreitol, 4 and 7 formed irreversible complexes with DNA of decreased template properties. The level of the dimers binding was lower than that of the parent compound 2. Cross-links were detected by means of hydroxylapatite chromatography in a complex of the dimer bearing a flexible linking chain, compound 4 with DNA, while the compound 7-DNA complex eluted in the single-stranded DNA region. The extent of cytotoxicity of the two 1-nitro-9-aminoacridine dimers against L1210 cultured cells was different.  相似文献   

19.
The 20-mer bridged oligodeoxynucleotides containing short oligomers joined by the hexamethylenediol and hexaethylene glycol linkers were shown to form complementary DNA/DNA and RNA/DNA complexes whose thermostability depends on the length and number of the nonnucleotide linkers. Hybrid complexes of the bridged oligonucleotides proved to be substrates for the E. coli ribonuclease H. The presence of one-three nonnucleotide linkers in a 20-mer decreased the hydrolysis efficacy only 1.2-1.4-fold. It is the composition of the RNA cleavage products that was influenced the most significantly by the nonnucleotide linkers. RNase H simultaneously hydrolyzed the RNA 3'-ends of each hybrid duplex involving a bridged oligonucleotide. The presence of an inverted 3'-3'-phosphodiester bond at the 3'-end of the oligodeoxyribonucleotide only slightly affected the RNase H activity.  相似文献   

20.
Due to the instability of DNA oligonucleotides in biological solutions, antisense or antigene therapies aimed at modulation of specific gene expression will most likely require the use of oligonucleotides with modified backbones. Here, we examine the use of a surface plasmon resonance biosensor (BIAcore) to compare triplex-directed binding of modified oligonucleotides targeted to a region of the murine c-myc promoter. We describe optimization of experimental conditions to minimize nonspecific interactions between the oligonucleotides and the sensor chip surface, and the limitations imposed by certain backbones and sequence types. The abilities of pyrimidine oligonucleotides with various modified backbones to form specific triple helices with an immobilized hairpin duplex were readily determined using the biosensor. Modification of the third-strand oligonucleotide with RNA or 2(')-O-methyl RNA was found to enhance triplex formation, whereas phosphorothioate or phosphotriester substitutions abrogated it. A comparison of these results to DNase I footprinting experiments using the same oligonucleotides showed complete agreement between the two sets of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号