首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Growth inhibition of Clostridium butyricum VPI 3266 by raw glycerol, obtained from the biodiesel production process, was evaluated. C. butyricum presents the same tolerance to raw and to commercial glycerol, when both are of similar grade, i.e. above 87% (w/v). A 39% increase of growth inhibition was observed in the presence of 100 g l–1 of a lower grade raw glycerol (65% w/v). Furthermore, 1,3-propanediol production from two raw glycerol types (65% w/v and 92% w/v), without any prior purification, was observed in batch and continuous cultures, on a synthetic medium. No significant differences were found in C. butyricum fermentation patterns on raw and commercial glycerol as the sole carbon source. In every case, 1,3-propanediol yield was around 0.60 mol/mol glycerol consumed.  相似文献   

2.
Summary In an effort to improve the viability of acetone-butanol-ethanol fermentation by extractive fermentation, 63 organic solvents, including alkanes, alcohols, aldehydes, acids, and esters, were experimentally evaluated for biocompatibility with Clostridium acetobutylicum by observing gas evolution from cultures in contact with candidate solvents. Thirty-one of these solvents were further tested to determine their partition coefficient for butanol in fermentation medium. The biocompatible solvent with the highest partition coefficient for butanol (4.8), was poly(propylene glycol) 1200, which was selected for fermentation experiments. This is the highest partition coefficient reported to date for a biocompatible solvent. Extractive fermentations using concentrated feeds were observed to produce up to 58.6 g·l–1 acetone and butanol in 202 h, the equivalent of three control fermentations in a single run. Product yields (based on total solvent products and glucose consumed) of 0.234 g·g–1 to 0.311 g·g–1 and within run solvent productivities of 0.174 g·l–1·h–1 to 0.290 g·l–1·h–1 were consistentwith conventional fermentations reported in the literature. The extended run-time of the fermentation resulted in an overall improvement in productivity by reducing the fraction of between-run down-time for fermentor cleaning and sterilization.  相似文献   

3.
Explants of Grateloupia doryphora were cultivated in Provasoli Enriched Seawater culture medium (PES) supplemented with glycerol (0.1, 0.3, 0.5 or 0.8 mol 1–1) or carbohydrates (0.1 or 0.3 mol 1–1 mannose, glucose and galactose) and agar (3, 8, 15 g 1–1 ). The osmolality of the medium was adjusted by dilution of the seawater (70 or 100%, v/v). The increase in fresh weight of explants cultivated in liquid medium with glycerol (0.3 mol 1–1) and without glycerol was compared. All experiments were carried out in the light, except for one assay in which the explants were cultivated in the dark. Glycerol was an effective carbon source for the vegetative propagation of G. doryphora in solid and liquid media. Mannose, glucose and galactose all had no effect on growth or morphogenesis of the explants. In solid media the main effect of glycerol was as a morphogenetic inductor, with PES70 (70% seawater) + 0.1 or 0.3 mol 1–1 glycerol + 3 or 8 g 1–1 agar the best formulation. An increase in the concentration of agar in glycerol-containing medium reduced the morphogenetic capacity of the explants, which developed into compact cell masses. The effects of glycerol were observed only in explants cultivated under light.  相似文献   

4.
Summary When Clostridium acetobutylicum was grown in continuous culture under phosphate limitation (0.74 mM) at a pH of 4.3, glucose was fermented to butanol, acetone and ethanol as the major products. At a dilution rate of D=0.025 h–1 and a glucose concentration of 300 mM, the maximal butanol and acetone concentrations were 130 mM and 74 mM, respectively. 20% of the glucose remained in the medium. On the basis of these results a two-stage continuous process was developed in which 87.5% of the glucose was converted into butanol, acetone and ethanol. The cells and minor amounts of acetate and butyrate accounted for the remaining 12.5% of the substrate. The first stage was run at D=0.125 h–1 and 37° C and the second stage at D=0.04 h–1 and 33° C. High yields of butanol and acetone were also obtained in batch culture under phosphate limitation.  相似文献   

5.
Screening cultures are usually non-monitored and non-controlled due to a lack of appropriate measuring techniques. A new device for online measurement of oxygen transfer rate (OTR) in shaking-flask cultures was used for monitoring the screening of Hansenula polymorpha. A shaking frequency of 300 rpm and a filling volume of 20 ml in 250-ml flasks ensured a sufficient oxygen transfer capacity of 0.032 mol (l h)–1 and thus a respiration not limited by oxygen. Medium buffered with 0.01 mol phosphate l–1 (pH 6.0) resulted in pH-inhibited respiration, whereas buffering with 0.12 mol phosphate l–1 (pH 4.1) resulted in respiration that was not inhibited by pH. The ammonium demand was balanced by establishing fixed relations between oxygen, ammonium, and glycerol consumption with 0.245±0.015 mol ammonium per mol glycerol. Plate precultures with complex glucose medium reduced the specific growth rate coefficient to 0.18 h–1 in subsequent cultures with minimal glycerol medium. The specific growth rate coefficient increased to 0.26 h–1 when exponentially growing precultures with minimal glycerol medium were used for inoculation. Changes in biomass, glycerol, ammonium, and pH over time were simulated on the basis of oxygen consumption.  相似文献   

6.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

7.
Bacteroides polypragmatus type strain GP4 was adapted to grow in the presence of 3.5% (w/v) ethanol by successive transfers into 1% (w/v)d-xylose media supplemented with increasing concentrations of ethanol. The maximum specific growth rate of the ethanol-adapted culture (=0.30 h-1) was not affected by up to 2% (w/v) ethanol but that of the non-adapted strain declined by about 50%. The growth rate of both cultures was limited by nutrient(s) contained in yeast extract. The ethanol yield of the adapted culture (1.01 mol/mol xylose) was higher than that (0.80 mol/mol xylose) of the non-adapted strain. The adapted culture retained the ability to simultaneously ferment pentose and hexose sugars, and moreover it was not inhibited by xylose concentrations of 7–9% (w/v). This culture also readily fermented hemicellulose hydrolysates obtained by mild acid hydrolysis of either hydrogen fluoride treated or steam exploded Aspen wood. The ethanol yield from the fermentation of the hydrolysates was comparable to that obtained from xylose.This paper is issued as NRCC No. 26338  相似文献   

8.
Summary The effect of product gases, H2 and CO2, on solvent production was studied using a continuous culture of alginate-immobilized Clostridium acetobutylicum. Initially, in order to find the optimum dilution rate for aceton--butanol production in this system, fermentations were carried out at various dilution rates. With 10% H2 and 10% CO2 in the sparging gas, a dilution rate of 0.07 h–1 was found to maximize volumetric productivity (0.58 g·l–1·h–1), while the maximum specific productivity of 0.27 g·h–1 occured at 0.12 h–1. Continuous cultures with vigorous sparging of N2 produced only acids. It was concluded that in the case of continuous fermentation H2 is essential for good solvent production, although good solvent production is possible in an H2-absent environment in the case of batch fermentations. When the fermentation was carried out at atmospheric pressure under H2-enriched conditions, the presence of CO2 in the sparging gas did not slow down glucose metabolism; rather it changed the direction of the phosphoroclastic reaction and as a result increased the butanol/acetone ratio.  相似文献   

9.
Ethanol, added as a de-emulsifier to separate oil and biocatalyst (or bacterial cells) from a three-phase (oil/biocatalyst/aqueous phase) emulsion, formed in diesel biodesulfurization employing Gordonia nitida, improved oil recovery by centrifugation from about 50% in its absence to almost 100% at 3% (v/v). The biocatalyst recovered with ethanol addition showed similar specific growth rates (0.03 h–1) and dibenzothiophene desulfurization rates (6–7.2 mol l–1 h–1) to those (0.03 h–1 and 7.1 mol l–1, respectively) of the biocatalyst recovered with no ethanol addition. The desulfurization activity significantly increased as the number of the repeated recovery and reuse of the biocatalyst.  相似文献   

10.
The technical possibilities of the microbial production of acetone, butanol and ethanol (ABE) from potato waste using in-line solvent recovery, are evaluated. Clostridium acetobutylicum DSM 1731 produces up to 20 g·l–1 of solvents when grown on a medium containing 14% (w/v) potato powder. Using a polypropylene perstraction system and a oleyl alcohol/decane mixture as the extractant, the product yield (based on total solvents and potato dry weight) increased from 0.13 g·g–1 to 0.23 g·g–1. The recovery system worked well for 50 h, after which membrane fouling frustrated proper operation. In the second system a microfiltration step was incorporated whereas the solvents were extracted through a hydrophilic membrane using fatty acid methyl esters from sunflower oil as an extractant. This process configuration resulted in a comparable increase of ABE production. Correspondence to: G. Eggink  相似文献   

11.
Lactobacillus helveticus grown in milk with pH control at 6.2 had a slower growth rate (=0.27 h–1) and produced less exopolysaccharide (49 mg l–1) but increased lactic acid production (425 mM) compared to cultures without pH control (=0.5 h–1, 380 mg exopolysaccharide l–1, and 210 mM lactate), respectively. Both cultures displayed a mixed-acid fermentation with formation of acetate, which is linked not only to citrate metabolism, but also to alternative pathways from pyruvate.  相似文献   

12.
In vitro shoot proliferation and bulblet production of garlic (Allium sativum L.) was studied in liquid cultures. Shoots grown in vitro were used as explants and were cultured in MS medium supplemented with 2% (w/v) sucrose and 0.5 mg l–1 2-iP. Three culture methods (semi-solid, liquid-immersion and raft) were compared for shoot proliferation. Explants in liquid (immersion) culture exhibited an increased multiplication rate and fresh weight of shoots after 3 weeks of culture as compared with the other treatments. Bulblet formation and growth were studied in liquid medium with different concentrations of sucrose (2–13%). MS medium containing 11% (w/v) sucrose was optimal for bulblet development and bulblets developed in this medium within 9 weeks in culture. The highest multiplication rate was (135 bulblets/explant) found when explants were cultured in bulbing medium (MS medium containing 0.1 mg l–1 NAA+11% (w/v) sucrose) supplemented with 10 M JA. Growth retardants CCC, B-9, ABA also promoted induction and growth of bulblets. Darkness promoted the bulblet induction and growth compared to light conditions (16-h photoperiod of 50 mol m–2 s–1). The dormancy of bulblets was broken by cold treatment at 4 °C for 8 weeks.  相似文献   

13.
Addition of 40 g NaCl l–1 to a chemically defined medium containing 140 g glucose l–1 in shake-flask culture improved glycerol production by Candida krusei from 16.5 g l–1 to 47.7 g l–1. With 40 g NaCl l–1 at a dilution rate of 0.065 h–1, glycerol concentration, glycerol yield (based on glucose consumed), and productivity in a four-stage cascade bioreactor were higher by 240%, 27% and 28%, respectively, than in a single-stage continuous culture system.  相似文献   

14.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

15.
The inhibition of substrate and product on the growth of Klebsiella pneumoniae in anaerobic and aerobic batch fermentation for the production of 1,3-propanediol was studied. The cells under anaerobic conditions had a higher maximum specific growth rate of 0.19 h–1 and lower tolerance to 110 g glycerol l–1, compared to the maximum specific growth rate of 0.17 h–1 and tolerance to 133 g glycerol l–1 under aerobic conditions. Acetate was the main inhibitory metabolite during the fermentation under anaerobic conditions, with lactate and ethanol the next most inhibitory. The critical concentrations of acetate, lactate and ethanol were assessed to be 15, 19, 26 g l–1, respectively. However, cells grown under aerobic conditions were more resistant to acetate and lactate but less resistant to ethanol. The critical concentrations of acetate, lactate and ethanol were assessed to be 24, 26, and 17 g l–1, respectivelyRevisions requested 8 september; Revisions received 2 November 2004  相似文献   

16.
Iron effect on acetone-butanol fermentation   总被引:5,自引:0,他引:5  
WhenClostridium acetobutylicum was grown in batch culture under iron limitation (0.2 mg·l–1) at a pH of 4.8, glucose was fermented, to butanol as the major fermentation end product, and small quantities of acetic acid were produced. The final conversion yield of glucose into butanol could be increased from 20% to 30% by iron limitation. The acetonebutanol ratio was changed from 3.7 (control) to 11.8. Hydrogenase specific activity was decreased by 40% and acetoacetate decarboxylase specific activity by 25% under iron limitation. Thus, iron limitation affects carbon and electron flow in addition to hydrogenase.  相似文献   

17.
The ruminal cellulolytic bacterium Fibrobacter succinogenes S85 was grown in cellulose-fed continuous culture at 22 different combinations of dilution rate (D, 0.014–0.076 h-1) and extracellular pH (6.11–6.84). Effects of pH and D on the fermentation were determined by subjecting data on cellulose consumption, cell yield, product yield (succinate, acetate, formate), and soluble sugar concentrationto response surface analysis. The extent of cellulose conversion decreased with increasing D. First-order rate constants at rapid growth rates were estimated as 0.07–0.11 h-1, and decreased with decreasing pH. Apparent decreases in the rate constant with increasing D was not due to inadequate mixing or preferential utilization of the more amorphous regions of the cellulose. Significant quantities of soluble sugars (0.04–0.18 g/l, primarily glucose) were detected in all cultures, suggesting that glucose uptake was rather inefficient. Cell yields (0.11–0.24 g cells/g cellulose consumed) increased with increasing D. Pirt plots of the predicted yield data were used to determined that maintenance coefficient (0.04–0.06 g cellulose/g cells · h) and true growth yield (0.23–0.25 g cells/g cellulose consumed) varied slightly with pH. Yields of succinate, the major fermentation endproduct, were as high as 1.15 mol/mol anhydroglucose fermented, and were slightly affected by dilution rate but were not affected by pH. Comparison of the fermentation data with that of other ruminal cellulolytic bacteria indicates that F. succinogenes S85 is capable of rapid hydrolysis of crystalline cellulose and efficient growth, despite a lower max on microcrystalline cellulose.  相似文献   

18.
Conventional acetone–butanol–ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L?1 of ABE (17.6 g L?1 butanol, 10.5 g L?1 ethanol, and 4.4 g L?1 acetone) from 85.2 g L?1 glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell‐recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L?1 h?1, respectively, could be achieved at the dilution rate of 0.85 h?1. Further cell recycling experiments were carried out with controlled cell‐bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h?1 with the bleeding rate of 0.04 h?1. Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L?1 h?1, and the yields of 0.17 and 0.34 g g?1, respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known‐processes. Biotechnol. Bioeng. 2013; 110: 1646–1653. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
A novel microorganism was isolated which is able to produce mannitol when grown in the presence of fructose and glucose as carbon sources. In flask culture in a medium containing 150 g fructose l–1, it yielded 67 g mannitol l–1 after 168 h. In fed-batch culture with 3–12% (w/v) fructose, production reached a maximum of 209 g mannitol l–1 after 200 h, corresponding to an 83% yield and a 1.03 g l–1 h–1 productivity. The isolated strain was identified as Candida magnoliae based on identical sequences in the D1/D2 domain of its 26S rDNA and a similar carbon source utilization pattern with C. magnoliae reference strains.  相似文献   

20.
Kim TB  Lee YJ  Kim P  Kim CS  Oh DK 《Biotechnology letters》2004,26(8):623-627
Long-term cell recycle fermentations of Candida tropicalis were performed over 14 rounds of fermentation. The average xylitol concentrations, fermentation times, volumetric productivities and product yields for 14 rounds were 105 g l–1, 333 h, 4.4 g l–1 h–1 and 78%, respectively, in complex medium; and 110 g l–1, 284 h, 5.4 g l–1 h–1 and 81%, respectively, in a chemically defined medium. These productivities were 1.7 and 2.4 times those with batch fermentation in the complex and chemically defined media, respectively. The xylitol yield from xylose with cell recycle fermentation using the chemically defined medium was 81% (w/w), which was 7% greater than the xylitol yield with batch fermentation (74%); both modes of fermentation gave the same yield using the complex medium. These results suggest that the chemically defined medium is more suitable for production of xylitol than complex medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号