首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1‐40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER‐ff99sb‐ILDN, AMBER‐ff99sb*‐ILDN, AMBER‐ff99sb‐NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER‐ff99sb‐ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α‐helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER‐ff99sb‐NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER‐ff99sb‐NMR force field, the others tended to under estimate the expected amount of β‐sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER‐ff99sb‐NMR, reproduce a theoretically expected β‐sheet‐turn‐β‐sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C‐terminal hydrophobic cores from residues 17‐21 and 30‐36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different.  相似文献   

2.
3.
All-atom force fields are now routinely used for more detailed understanding of protein folding mechanisms. However, it has been pointed out that use of all-atom force fields does not guarantee more accurate representations of proteins; in fact, sometimes it even leads to biased structural distributions. Indeed, several issues remain to be solved in force field developments, such as accurate treatment of implicit solvation for efficient conformational sampling and proper treatment of backbone interactions for secondary structure propensities. In this study, we first investigate the quality of several recently improved backbone interaction schemes in AMBER for folding simulations of a beta-hairpin peptide, and further study their influences on the peptide's folding mechanism. Due to the significant number of simulations needed for a thorough analysis of tested force fields, the implicit Poisson-Boltzmann solvent was used in all simulations. The chosen implicit solvent was found to be reasonable for studies of secondary structures based on a set of simulations of both alpha-helical and beta-hairpin peptides with the TIP3P explicit solvent as benchmark. Replica exchange molecular dynamics was also utilized for further efficient conformational sampling. Among the tested AMBER force fields, ff03 and a revised ff99 force field were found to produce structural and thermodynamic data in comparably good agreement with the experiment. However, detailed folding pathways, such as the order of backbone hydrogen bond zipping and the existence of intermediate states, are different between the two force fields, leading to force field-dependent folding mechanisms.  相似文献   

4.
The development of the most recent generation of molecular mechanics force fields promises an increasingly predictive understanding of the protein dynamics-function relationship. Based on extensive validation against various types of experimental data, the AMBER force field ff99SB was benchmarked in recent years as a favorable force field for protein simulations. Recent improvements of the side chain and backbone potentials, made by different groups, led to the ff99SB-ILDN and ff99SBnmr1 force fields, respectively. The combination of these potentials into a unified force field, termed ff99SBnmr1-ILDN, was used in this study to perform a microsecond time scale molecular dynamics simulation of free ubiquitin in explicit solvent for validation against an extensive set of experimental NMR methyl group residual dipolar couplings. Our results show a high level of consistency between the experimental data and the values predicted from the molecular dynamics trajectory reflecting a systematically improved performance of ff99SBnmr1-ILDN over the original ff99SB force field. Moreover, the unconstrained ff99SBnmr1-ILDN MD ensemble achieves a similar level of agreement as the recently introduced EROS ensemble, which was constructed based on a large body of NMR data as constraints, including the methyl residual dipolar couplings. This suggests that ff99SBnmr1-ILDN provides a high-quality representation of the motions of methyl-bearing protein side chains, which are sensitive probes of protein-protein and protein-ligand interactions.  相似文献   

5.
David R. Koes  John K. Vries 《Proteins》2017,85(10):1944-1956
NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1H, 15N, and 13Ca atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields.  相似文献   

6.
New force fields for molecular dynamics (MD) simulation of aqueous zwitterionic amino acid simulations were developed. These were especially designed to calculate activity coefficient of water in amino acid solutions with high accuracy. For example, aqueous solutions of the following amino acids were considered: glycine, alanine, α-aminobutyric acid, α-aminovalerianic acid, valine and leucine. The force fields were obtained by quantum chemical calculations using B3LYP/6-31G and MP2/6-311(d,p) model theories in combination with the Merz–Kollmann–Singh scheme. To further increase the accuracy of the force field, a polarised continuum was considered in all quantum chemical calculations. Water activity coefficients obtained from MD using different all-purpose literature force fields, namely, OPLS, AMBER ff03 and GROMOS 53A6 as well as experimental data are compared with the results utilising the new force field. The new force field is shown to give better results compared with experimental data than existing force fields.  相似文献   

7.
Pendley SS  Yu YB  Cheatham TE 《Proteins》2009,74(3):612-629
The alpha-helical coiled-coil is one of the most common oligomerization motifs found in both native and engineered proteins. To better understand the stability and dynamics of the coiled-coil motifs, including those modified by fluorination, several fluorinated and nonfluorinated parallel dimeric coiled-coil protein structures were designed and modeled. We also attempt to investigate how changing the length and geometry of the important stabilizing salt bridges influences the coiled-coil protein structure. Molecular dynamics (MD) and free energy simulations with AMBER used a particle mesh Ewald treatment of the electrostatics in explicit TIP3P solvent with balanced force field treatments. Preliminary studies with legacy force fields (ff94, ff96, and ff99) show a profound instability of the coiled-coil structures in short MD simulation. Significantly, better behavior is evident with the more balanced ff99SB and ff03 protein force fields. Overall, the results suggest that the coiled-coil structures can readily accommodate the larger acidic arginine or S-2,7-diaminoheptanedoic acid mutants in the salt bridge, whereas substitution of the smaller L-ornithine residue leads to rapid disruption of the coiled-coil structure on the MD simulation time scale. This structural distortion of the secondary structure allows both the formation of large hydration pockets proximal to the charged groups and within the hydrophobic core. Moreover, the increased structural fluctuations and movement lead to a decrease in the water occupancy lifetimes in the hydration pockets. In contrast, analysis of the hydration in the stable dimeric coiled-coils shows high occupancy water sites along the backbone residues with no water occupancy in the hydrophobic core, although transitory water interactions with the salt bridge residues are evident. The simulations of the fluorinated coiled-coils suggest that in some cases fluorination electrostatically stabilizes the intermolecular coiled-coil salt bridges. Structural analyses also reveal different side chain rotamer preferences for leucine when compared with 5,5,5,5',5',5'-hexafluoroleucine mutants. These observed differences in the side chain rotamer populations suggest differential changes in the side chain conformational entropy upon coiled-coil formation when the protein is fluorinated. The free energy of hydration of the isolated 5,5,5,5',5',5'-hexafluoroleucine amino acid is calculated to be 1.1 kcal/mol less stable than leucine; this hydrophobic penalty in the monomer may provide a driving force for coiled-coil dimer formation. Estimation of the ellipticity at 222 nm from a series of snapshots from the MD simulations with DicroCalc shows distinct increases in the ellipticity when the coiled-coil is fluorinated, which suggests that the helicity in the folded coiled-coils is greater when fluorinated.  相似文献   

8.
We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5) . d(A5G5) (Feig, M. and B.M. Pettitt, 1997, Experiment vs. Force Fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. (101:7361-7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.  相似文献   

9.
Elucidating the relationship between sequence and conformation is essential for the understanding of functions of proteins. While sharing 88 % sequence identity and differing by only seven residues, GA88 and GB88 have completely different structures and serve as ideal systems for investigating the relationship between sequence and function. Benefiting from the continuous advancement of the computational ability of modern computers, molecular dynamics (MD) simulation is now playing an increasingly important role in the study of proteins. However, the reliability of MD simulations is limited by the accuracy of the force fields and solvent model approximations. In this work, several AMBER force fields (AMBER03, AMBER99SB, AMBER12SB, AMBER14SB, AMBER96) and solvent models (TIP3P, IGB5, IGB7, IGB8) have been employed in the simulations of GA88 and GB88. The statistical results from 19 simulations show that GA88 and GB88 both adopt more compact structures than the native structures. GB88 is more stable than GA88 regardless of the force fields and solvent models utilized. Most of the simulations overestimated the salt bridge interaction. The combination of AMBER14SB force field and IGB8 solvent model shows the best overall performance in the simulations of both GA88 and GB88. AMBER03 and AMBER12SB also yield reasonable results but only in the TIP3P explicit solvent model.  相似文献   

10.
The calculation of protein–ligand binding free energy (ΔG) is of great importance for virtual screening and drug design. Molecular dynamics (MD) simulation has been an attractive tool to investigate this scientific problem. However, the reliability of such approach is affected by many factors including electrostatic interaction calculation. Here, we present a practical protocol using quantum mechanics/molecular mechanics (QM/MM) calculations to generate polarizable QM protein charge (QMPC). The calculated QMPC of some atoms in binding pockets was obviously different from that calculated by AMBER ff03, which might significantly affect the calculated ΔG. To evaluate the effect, the MD simulations and MM/GBSA calculation with QMPC for 10 protein–ligand complexes, and the simulation results were then compared to those with the AMBER ff03 force field and experimental results. The correlation coefficient between the calculated ΔΔG using MM/GBSA under QMPC and the experimental data is .92, while that with AMBER ff03 force field is .47 for the complexes formed by streptavidin or its mutants and biotin. Moreover, the calculated ΔΔG with QMPC for the complexes formed by ERβ and five ligands is positively related to experimental result with correlation coefficient of .61, while that with AMBER ff03 charge is negatively related to experimental data with correlation coefficient of .42. The detailed analysis shows that the electrostatic polarization introduced by QMPC affects the electrostatic contribution to the binding affinity and thus, leads to better correlation with experimental data. Therefore, this approach should be useful to virtual screening and drug design.  相似文献   

11.
Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side‐chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha‐helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side‐chain torsion potentials of these residues to match new, high‐level quantum‐mechanical calculations. Finally, we used microsecond‐timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side‐chain conformations. The new force field, which we have termed Amber ff99SB‐ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The ability to fold proteins on a computer has highlighted the fact that existing force fields tend to be biased toward a particular type of secondary structure. Consequently, force fields for folding simulations are often chosen according to the native structure, implying that they are not truly “transferable.” Here we show that, while the AMBER ff03 potential is known to favor helical structures, a simple correction to the backbone potential (ff03) results in an unbiased energy function. We take as examples the 35-residue α-helical Villin HP35 and 37 residue β-sheet Pin WW domains, which had not previously been folded with the same force field. Starting from unfolded configurations, simulations of both proteins in Amber ff03 in explicit solvent fold to within 2.0 Å RMSD of the experimental structures. This demonstrates that a simple backbone correction results in a more transferable force field, an important requirement if simulations are to be used to interpret folding mechanism.  相似文献   

13.
14.
The dynamics of HIV-1 protease (HIV-pr), a drug target for HIV infection, has been studied extensively by both computational and experimental methods. The flap dynamics of HIV-pr is considered to be more important for better ligand binding and enzymatic actions. Moreover, it has been demonstrated that the drug-induced mutations can change the flap dynamics of HIV-pr affecting the binding affinity of the ligands. Therefore, detailed understanding of flap dynamics is essential for designing better inhibitors. Previous computational investigations observed significant variation in the flap opening in nanosecond time scale indicating that the dynamics is highly sensitive to the simulation protocols. To understand the sensitivity of the flap dynamics on the force field and simulation protocol, molecular dynamics simulations of HIV-pr have been performed with two different AMBER force fields, ff99 and ff02. Two different trajectories (20?ns each) were obtained using the ff99 and ff02 force field. The results showed polarizable force field (ff02) make the flap tighter than the nonpolarizable force field (ff99). Some polar interactions and hydrogen bonds involving flap residues were found to be stronger with ff02 force field. The formation of interchain hydrophobic cluster (between flap tip of one chain and active site wall of another chain) was found to be dominant in the semi-open structures obtained from the simulations irrespective of the force field. It is proposed that an inhibitor, which will promote this interchain hydrophobic clustering, may make the flaps more rigid, and presumably the effect of mutation would be small on ligand binding.  相似文献   

15.
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin‐lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4‐hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius‐type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force‐field (termed as AMBER99SB‐ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
This article provides a retrospective on the ABC initiative in the area of all-atom molecular dynamics (MD) simulations including explicit solvent on all tetranucleotide steps of duplex B-form DNA duplex, ca. 2012. The ABC consortium has completed two phases of simulations, the most current being a set of 50-100 trajectories based on the AMBER ff99 force field together with the parmbsc0 modification. Some general perspectives on the field of MD on DNA and sequence effects on DNA structure are provided, followed by an overview our MD results, including a detailed comparison of the ff99/parmbsc0 results with crystal and NMR structures available for d(CGCGAATTCGCG). Some projects inspired by or related to the ABC initiative and database are also reviewed, including methods for the trajectory analyses, informatics of dealing with the large database of results, compressions of trajectories for efficacy of distribution, DNA solvation by water and ions, parameterization of coarse-grained models with applications and gene finding and genome annotation.  相似文献   

17.
Towards a molecular dynamics consensus view of B-DNA flexibility   总被引:1,自引:1,他引:0       下载免费PDF全文
We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.  相似文献   

18.
The hallmark of Parkinson’s disease (PD) is the intracellular protein aggregation forming Lewy Bodies (LB) and Lewy neuritis which comprise mostly of a protein, alpha synuclein (α-syn). Molecular dynamics (MD) simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution. The quality of MD simulations for proteins and peptides depends greatly on the accuracy of empirical force fields. The aim of this work is to investigate the effects of different force fields on the structural character of β hairpin fragment of α-syn (residues 35–56) peptide in aqueous solution. Six independent MD simulations are done in explicit solvent using, AMBER03, AMBER99SB, GROMOS96 43A1, GROMOS96 53A6, OPLS-AA, and CHARMM27 force fields with CMAP corrections. The performance of each force field is assessed from several structural parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), formation of β-turn, the stability of folded β-hairpin structure, and the favourable conformations obtained for different force fields. In this study, CMAP correction of CHARMM27 force field is found to overestimate the helical conformation, while GROMOS96 53A6 is found to most successfully capture the conformational dynamics of α-syn β-hairpin fragment as elicited from NMR.  相似文献   

19.
Voelz VA  Dill KA  Chorny I 《Biopolymers》2011,96(5):639-650
To test the accuracy of existing AMBER force field models in predicting peptoid conformation and dynamics, we simulated a set of model peptoid molecules recently examined by Butterfoss et al. (JACS 2009, 131, 16798-16807) using QM methods as well as three peptoid sequences with experimentally determined structures. We found that AMBER force fields, when used with a Generalized Born/Surface Area (GBSA) implicit solvation model, could accurately reproduce the peptoid torsional landscape as well as the major conformers of known peptoid structures. Enhanced sampling by replica exchange molecular dynamics (REMD) using temperatures from 300 to 800 K was used to sample over cis-trans isomerization barriers. Compared to (Nrch)5 and cyclo-octasarcosyl, the free energy of N-(2-nitro-3-hydroxyl phenyl)glycine-N-(phenyl)glycine has the most "foldable" free energy landscape, due to deep trans-amide minima dictated by N-aryl sidechains. For peptoids with (S)-N (1-phenylethyl) (Nspe) side chains, we observe a discrepancy in backbone dihedral propensities between molecular simulations and QM calculations, which may be due to force field effects or the inability to capture n --> n* interactions. For these residues, an empirical phi-angle biasing potential can "rescue" the backbone propensities seen in QM. This approach can serve as a general strategy for addressing force fields without resorting to a complete reparameterization. Overall, this study demonstrates the utility of implicit-solvent REMD simulations for efficient sampling to predict peptoid conformational landscapes, providing a potential tool for first-principles design of sequences with specific folding properties.  相似文献   

20.
Classical molecular dynamics (MD) simulations using fixed charged force field (AMBER ff03) and density functional theory method using the M05-2X/6-31G?? level of theory have been used to investigate the plasticity of the hydrogen bond formed between dipeptides of N-Acetyl-Leucine-MethylAmide (NALMA), N-Acetyl-Glycine-MethylAmide (NAGMA), and vicinity of water molecules at temperature of 300?K. We have noticed that 2–3 water molecules contribute to change in the conformations of dipeptides NAGMA and NALMA. The self-assembly of 11 water molecules leads to the formation of water bridge at vicinity of the dipeptides and it constrain the conformations of dipeptides. We have found that the energy balance between breaking of the C?=?O…H–N H bonds and the formation of the C?=?O…H–O (wat) H bonds may be one of the determining factors to control the dynamics of the folding process of protein molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号