首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The many faces of amyloid beta in Alzheimer's disease   总被引:1,自引:0,他引:1  
The 'amyloid cascade hypothesis' links amyloid beta peptide (Abeta) with the pathological process of Alzheimer's disease (AD) and it still awaits universal acceptance. Amyloid precursor protein (APP), through the actions of the gamma-secretase complex, eventually becomes a different Abetaspecies. The various Abeta species have proven to be difficult to investigate under physiological conditions, and the species of Abeta responsible for neurotoxicity has yet to be unequivocally identified. The two important Abeta peptides involved are Abeta(1-40) and Abeta(1-42), and each has been ascribed both toxic and beneficial attributes. The ratio between the two species can be important in AD etiology. Additionally, shorter variants of Abeta peptides such as Abeta(1-8), Abeta(9-16) and Abeta(16) have also been shown to be potential participants in AD pathology. Interestingly, a new 56-kDa Abeta peptide (Abeta*56) disrupts memory when injected into the brains of young rats. Transgenic mice models are complicated by the interplay between various human Abeta types and the mouse Abeta types in the mouse brains. However, the accumulation of Abeta(1-42) in the brains of transgenic C. elegans worms and Drosophila is indeed detrimental. A less investigated aspect of AD is epigenetics, but in time the investigation of the role of epigenetics in AD may add to our understanding of the development of AD.  相似文献   

3.
Amyloid beta peptide (A beta) is believed to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the form of A beta that induces neurodegeneration in AD, defined here as bioactive A beta, is not clear. Preventing the formation of bioactive A beta or inactivating previously formed bioactive A beta should be a promising approach to treat AD. We have previously developed a cell-based assay for the detection of bioactive A beta species. The assay is based upon the correlation between the ability of an A beta sample to induce a unique form of cellular MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] formazan exocytosis, and its ability to activate glia and induce neurotoxicity. Here, we show that this cell-based assay is not only useful for a cellular model of A beta amyloidogenesis but is also able to detect bioactive A beta species in a transgenic mouse model of AD, as well as in post-mortem cortex samples from AD patients. There is a good correlation between the extent of glia activation and the level of bioactive A beta species in the mouse brain. A promising deuteroporphyrin that can inactivate bioactive A beta species was also identified using this assay. These novel insights and findings should have important implications for the treatment of AD.  相似文献   

4.
5.
Research on Alzheimer's disease (AD) focuses mainly on neuronal death and synaptic impairment induced by beta-Amyloid peptide (Abeta), events at least partially mediated by astrocyte and microglia activation. However, substantial white matter damage and its consequences on brain function warrant the study of oligodendrocytes participation in the pathogenesis and progression of AD. Here, we analyze reports on oligodendrocytes' compromise in AD and discuss some experimental data indicative of Abeta toxicity in culture. We observed that 1 microM of fibrilogenic Abeta peptide damages oligodendrocytes in vitro: while pro-inflammatory molecules (1 microg/ ml LPS + 1 ng/ml IFNgamma) or the presence of astrocytes reduced the Abeta-induced damage. This agrees with our previous results showing an astrocyte-mediated protective effect over Abeta-induced damage on hippocampal cells and modulation of the activation of microglial cells in culture. Oligodendrocytes protection by astrocytes could be, either by reduction of Abeta fibrilogenesis/deposition or prevention of oxidative damage. Likewise, the decrease of Abeta-induced damage by proinflammatory molecules could reflect the production of trophic factors by activated oligodendrocytes and/or a metabolic activation as observed during myelination. Considering the association of inflammation with neurodegenerative diseases. oligodendrocytes impairment in AD patients could potentiate cell damage under pathological conditions.  相似文献   

6.
There is a growing body of evidence to support a role for oxidative stress in Alzheimer's disease (AD), with increased levels of lipid peroxidation, DNA and protein oxidation products (HNE, 8-HO-guanidine and protein carbonyls respectively) in AD brains. The brain is a highly oxidative organ consuming 20% of the body's oxygen despite accounting for only 2% of the total body weight. With normal ageing the brain accumulates metals ions such iron (Fe), zinc (Zn) and copper (Cu). Consequently the brain is abundant in antioxidants to control and prevent the detrimental formation of reactive oxygen species (ROS) generated via Fenton chemistry involving redox active metal ion reduction and activation of molecular oxygen. In AD there is an over accumulation of the Amyloid beta peptide (Abeta), this is the result of either an elevated generation from amyloid precursor protein (APP) or inefficient clearance of Abeta from the brain. Abeta can efficiently generate reactive oxygen species in the presence of the transition metals copper and iron in vitro. Under oxidative conditions Abeta will form stable dityrosine cross-linked dimers which are generated from free radical attack on the tyrosine residue at position 10. There are elevated levels of urea and SDS resistant stable linked Abeta oligomers as well as dityrosine cross-linked peptides and proteins in AD brain. Since soluble Abeta levels correlate best with the degree of degeneration [C.A. McLean, R.A. Cherny, F.W. Fraser, S.J. Fuller, M.J. Smith, K. Beyreuther, A.I. Bush, C.L. Masters, Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol. 46 (1999) 860-866] we suggest that the toxic Abeta species corresponds to a soluble dityrosine cross-linked oligomer. Current therapeutic strategies using metal chelators such as clioquinol and desferrioxamine have had some success in altering the progression of AD symptoms. Similarly, natural antioxidants curcumin and ginkgo extract have modest but positive effects in slowing AD development. Therefore, drugs that target the oxidative pathways in AD could have genuine therapeutic efficacy.  相似文献   

7.
Mass spectrometry of purified amyloid beta protein in Alzheimer's disease.   总被引:7,自引:0,他引:7  
The amyloid beta-protein (A beta) that is progressively deposited in Alzheimer's disease (AD) arises from proteolysis of the integral membrane protein, beta-amyloid precursor protein (beta APP). Although A beta formation appears to play a seminal role in AD, only a few studies have examined the chemical structure of A beta purified from brain, and there are discrepancies among the findings. We describe a new method for the rapid extraction and purification of A beta that minimizes artifactual proteolysis. A beta purified by two-dimensional reverse-phase HPLC was analyzed by combined amino acid sequencing and mass spectrometry after digestion with a lysylendopeptidase. The major A beta peptide in the cerebral cortex of all five AD brains examined was aspartic acid 1 to valine 40. A minor species beginning at glutamic acid 3 but blocked by conversion to pyroglutamate was also found in all cases. A species ending at threonine 43 was detected, varying from approximately 5 to 25% of total A beta COOH-terminal fragments. Peptides ending with valine 39, isoleucine 41, or alanine 42 were not detected, except for one brain with a minor peptide ending at valine 39. Our findings suggest that A beta 1-40 is the major species of beta-protein in AD cerebral cortex. A beta 1-40 and A beta 1-43 peptides could arise independently from beta APP, or A beta 1-43 could be the initial excised fragment, followed by digestion to yield A beta 1-40. These analyses of native A beta in AD brain recommend the use of synthetic A beta 1-40 peptide to model amyloid fibrillogenesis and toxicity in vitro.  相似文献   

8.
Amyloid beta (Aβ) plays a critical role in the pathophysiology of Alzheimer's disease. Increasing evidence indicates mitochondria as an important target of Aβ toxicity; however, the effects of Aβ toxicity on mitochondria have not yet been fully elucidated. Recent biochemical studies in vivo and in vitro implicate mitochondrial permeability transition pore (mPTP) formation involvement in Aβ-mediated mitochondrial dysfunction. mPTP formation results in severe mitochondrial dysfunction such as reactive oxygen species (ROS) generation, mitochondrial membrane potential dissipation, intracellular calcium perturbation, decrease in mitochondrial respiration, release of pro-apoptotic factors and eventually cell death. Cyclophilin D (CypD) is one of the more well-known mPTP components and recent findings reveal that Aβ has significant impact on CypD-mediated mPTP formation. In this review, the role of Aβ in the formation of mPTP and the potential of mPTP inhibition as a therapeutic strategy in AD treatment are examined.  相似文献   

9.
10.
Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP(+1) is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP(+1) immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid beta40 in cells co-expressing APP695 and APP(+1), although APP(+1) itself does not contain the amyloid beta sequence. Taken together, these data show that co-expression of APP695 and APP(+1) affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.  相似文献   

11.
The amyloid A4 (or beta protein), a 4.2 kD polypeptide, is a major component of amyloid deposits in the brains of patients with Alzheimer's Disease (AD). The self-aggregating amyloid A4 protein of AD is encoded as part of three larger proteins by the amyloid A4 precursor gene. The corresponding proteins have 695, 751 and 770 amino acid residues. To investigate the utility of amyloid beta protein precursor (A beta PP) as a diagnostic marker for AD an antiserum against a synthetic peptide (175-186), predicted from cDNA sequence for A beta PP, was used. The immunoreactivity of A beta PP in normal and AD cerebrospinal fluid (CSF) was measured by Western blot and detected with radiolabeled protein A. A total of fifty-seven CSF samples (AD = 27 and normal = 30) were analyzed for A beta PP immunoreactivity. A polyclonal antibody detected two major protein bands with apparent molecular weights of 105kD and 90kD both in normal and AD CSF. The difference between normal and AD CSF was not significant. These results indicate that immunoreactivity of A beta PP is present both in normal and AD CSF, and that the difference is too small to be used as a diagnostic marker.  相似文献   

12.
Since the discovery that apolipoprotein E, a cholesterol transport protein, is a major risk factor for Alzheimer's disease (AD) development, there has been a remarkable interest in understanding the many facets of the relationship between cholesterol and AD. Several lines of evidence have demonstrated the importance of cholesterol in amyloid beta peptide (Aβ) production and metabolism, as well as the involvement of Aβ in cholesterol homeostasis. The emerging picture is complex and still incomplete. This review discusses findings that indicate that a reciprocal regulation exists between Aβ and cholesterol at the subcellular level. The pathological impact of such regulation is highlighted.  相似文献   

13.
Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrPSc). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ~30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.  相似文献   

14.
Amyloid beta (Aβ) deposition in the neocortex is a major hallmark of Alzheimer''s disease (AD), but the extent of deposition does not readily explain phenotypic diversity and rate of disease progression. The prion strain–like model of disease heterogeneity suggests the existence of different conformers of Aβ. We explored this paradigm using conformation-dependent immunoassay (CDI) for Aβ and conformation-sensitive luminescent conjugated oligothiophenes (LCOs) in AD cases with variable progression rates. Mapping the Aβ conformations in the frontal, occipital, and temporal regions in 20 AD patients with CDI revealed extensive interindividual and anatomical diversity in the structural organization of Aβ with the most significant differences in the temporal cortex of rapidly progressive AD. The fluorescence emission spectra collected in situ from Aβ plaques in the same regions demonstrated considerable diversity of spectral characteristics of two LCOs—quatroformylthiophene acetic acid and heptaformylthiophene acetic acid. Heptaformylthiophene acetic acid detected a wider range of Aβ deposits, and both LCOs revealed distinct spectral attributes of diffuse and cored plaques in the temporal cortex of rapidly and slowly progressive AD and less frequent and discernible differences in the frontal and occipital cortex. These and CDI findings indicate a major conformational diversity of Aβ accumulating in the neocortex, with the most notable differences in temporal cortex of cases with shorter disease duration, and implicate distinct Aβ conformers (strains) in the rapid progression of AD.  相似文献   

15.
The amyloid deposited in Alzheimer's disease (AD) is composed primarily of a 39-42 residue polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). In previous studies, we and others identified full-length, membrane-associated forms of the beta APP and showed that these forms are processed into soluble derivatives that lack the carboxyl-terminus of the full-length forms. In this report, we demonstrate that the soluble approximately 125 and approximately 105 kDa forms of the beta APP found in human cerebrospinal fluid are specifically labeled by several different antisera to the beta AP. This finding indicates that both soluble derivatives contain all or part of the beta AP sequence, and it suggests that one or both of these forms may be the immediate precursor of the amyloid deposited in AD.  相似文献   

16.
The deposition of 4-kDa amyloid peptide in the brain is a prominent feature of several human diseases. Such process is heterogeneous in terms of causative factors, biochemical phenotype, localization and clinical manifestations. Amyloid accumulates in the neuropil or within the walls of cerebral vessels, and associates with dementia or stroke, both hereditary and sporadic. Amyloid is normally released by cells as soluble monomeric-dimeric species yet, under pathological conditions, it self-aggregates as soluble oligomers or insoluble fibrils that may be toxic to neurons and vascular cells. Lowering amyloid levels may be achieved by inhibiting its generation from the amyloid -precursor protein or by promoting its clearence by transport or degradation. We will summarize recent findings on brain proteases capable of degrading amyloid with a special focus on those enzymes for which there is genetic, transgenic or biochemical evidence suggesting that they may participate in the proteolysis of amyloid in vivo. We will also put in perspective their possible utilization as therapeutic agents in amyloid diseases.  相似文献   

17.
The deposition of amyloid beta A4 in the brain is a major pathological hallmark of Alzheimer's disease. Amyloid beta A4 is a peptide composed of 42 or 43 amino acid residues. In brain, it appears in the form of highly insoluble, filamentous aggregates. Using synthetic peptides corresponding to the natural beta A4 sequence as well as analog peptides, we demonstrate requirements for filament formation in vitro. We also determine aggregational properties and the secondary structure of beta A4. A comparison of amino-terminally truncated beta A4 peptides identifies a peptide spanning residues 10 to 43 as a prototype for amyloid beta A4. Infrared spectroscopy of beta A4 peptides in the solid state shows that their secondary structure consists of a beta-turn flanked by two strands of antiparallel beta-pleated sheet. Analog peptides containing a disulfide bridge were designed to stabilize different putative beta-turn positions. Limited proteolysis of these analogs allowed a localization of the central beta-turn at residues 26 to 29 of the entire sequence. Purified beta A4 peptides are soluble in water. Size-exclusion chromatography shows that they form dimers that, according to circular dichroism spectroscopy, adopt a beta-sheet conformation. Upon addition of salts, the bulk fraction of peptides precipitates and adopts a beta-sheet structure. Only a small fraction of peptides remains solubilized. They are monomeric and adopt a random coil conformation. This suggests that the formation of aggregates depends upon a hydrophobic effect that leads to intra- and intermolecular interactions between hydrophobic parts of the beta A4 sequence. This model is sustained by the properties of beta A4 analogs in which hydrophobic residues were substituted. These peptides show a markedly increased solubility in salt solutions and have lost the ability to form filaments. In contrast, the substitution of hydrophilic residues leads only to small deviations in the shape of filaments, indicating that hydrophilic residues contribute to the specificity of interactions between beta A4 peptides.  相似文献   

18.
The pathological hallmark of Alzheimer's disease (AD) is accumulation in the brain of amyloid composed of the 40-mer peptide A beta. Many fundamental questions about the biology of (AD) remain unanswered because there is currently no method of quantifying A beta amyloid in vivo. A noninvasive method of detecting and quantifying A beta amyloid in vivo would have wide application for the premortem diagnosis of AD and the efficient evaluation of candidate therapeutics aimed at inhibiting the formation and growth of A beta amyloid. Taking advantage of the extraordinarily high affinity of A beta for itself, we have synthesized an N'-terminal diethylenetriaminepentaacetic acid (DTPA) derivative of A beta possessing the kinetic activity and specificity for A beta amyloid desired of a probe to be used for noninvasive imaging. DTPA-A beta(3-40) is readily labeled with (111)InOAc(3) to yield a stable probe with exquisite specificity for naturally occurring and synthetic A beta amyloid in vitro. Moreover, (111)In-DTPA-A beta(3-40), administered intravascularly can specifically deposit onto and label previously injected synthetic A beta amyloid and be imaged in vivo with a gamma camera. The present results demonstrate the design, synthesis, and use of an A beta amyloid-specific probe and methods for its use as a noninvasive imaging agent. In vivo imaging of A beta amyloid represents an important step toward the development of biochemically based objective tools for the assessment of progression of AD and efficacy of potential therapeutics.  相似文献   

19.
20.
Brain amyloid composed of the approximately 40-amino-acid human beta-amyloid peptide A beta is integral to Alzheimer's disease pathology. To probe the importance of a conformational transition in Abeta during amyloid growth, we synthesized and examined the solution conformation and amyloid deposition activity of A beta congeners designed to have similar solution structures but to vary substantially in their barriers to conformational transition. Although all these peptides adopt similar solution conformations, a covalently restricted Abeta congener designed to have a very high barrier to conformational rearrangement was inactive, while a peptide designed to have a reduced barrier to conformational transition displayed an enhanced deposition rate relative to wild-type A beta. The hyperactive peptide, which is linked to a heritable A beta amyloidosis characterized by massive amyloid deposition at an early age, displayed a reduced activation barrier to deposition consistent with a larger difference in activation entropy than in activation enthalpy relative to wild-type A beta. These results suggest that in Alzheimer's disease, as in the prion diseases, a conformational transition in the depositing peptide is essential for the conversion of soluble monomer to insoluble amyloid, and alterations in the activation barrier to this transition affect amyloidogenicity and directly contribute to human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号