首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes mellitus may result in impaired cardiac contractility, but the underlying mechanisms remain unclear. We aimed to investigate the temporal alterations in cardiac force- and flow-generation capacity and loading conditions as well as mechanical efficiency in the evolution of systolic dysfunction in streptozotocin (STZ)-induced diabetic rats. Adult male Wistar rats were randomized into control and STZ-induced diabetic groups. Invasive hemodynamic studies were done at 8, 16, and 22 wk post-STZ injection. Maximal systolic elastance (E(max)) and maximum theoretical flow (Q(max)) were assessed by curve-fitting techniques, and ventriculoarterial coupling and mechanical efficiency were assessed by a single-beat estimation technique. In contrast to early occurring and persistently depressed E(max), Q(max) progressively increased with time but was decreased at 22 wk post-STZ injection, which temporally correlated with the changes in cardiac output. The favorable loading conditions enhanced stroke volume and Q(max), whereas ventriculoarterial uncoupling attenuated the cardiac mechanical efficiency in diabetic animals. The changes in E(max) and Q(max) are discordant during the progression of contractile dysfunction in the diabetic heart. In conclusion, our study showed that depressed Q(max) and cardiac mechanical efficiency, occurring preceding overt systolic heart failure, are two major determinants of deteriorating cardiac performance in diabetic rats.  相似文献   

2.
ABSTRACT: BACKGROUND: Alpha-lipoic acid (ALA), a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against Diabetic cardiomyopathy (DCM) has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS), extracellular matrix (ECM) remodeling and interrelated signaling pathways in a diabetic rat model. METHODS: Diabetes was induced in rats by I.V. injection of streptozotocin (STZ) at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen) was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2) levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (alpha-SMA) and transforming growth factor-beta (TGF-beta). Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK), p38 MAPK and ERK were also assayed by Western blot. RESULTS: DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated signaling pathway components were evaluated. It was shown that redox homeostasis was disturbed and MAPK signaling pathway components activated in STZ-induced DCM animals. While ALA treatment favorably shifted redox homeostasis and suppressed JNK and p38 MAPK activation. CONCLUSIONS: These results, coupled with the excellent safety and tolerability profile of ALA in humans, demonstrate that ALA may have therapeutic potential in the treatment of DCM by attenuating MOS, ECM remodeling and JNK, p38 MAPK activation.  相似文献   

3.
Previous studies have shown that the expression of inwardly rectifying potassium channel 6.1 (Kir6.1) in heart mitochondria is significantly reduced in type 1 diabetes. However, whether its expression and function are changed and what role it plays in type 2 diabetic cardiomyopathy (DCM) have not been reported. This study investigated the role and mechanism of Kir6.1 in DCM. We found that the cardiac function and the Kir6.1 expression in DCM mice were decreased. We generated mice overexpressing or lacking Kir6.1 gene specifically in the heart. Kir6.1 overexpression improved cardiac dysfunction in DCM. Cardiac-specific Kir6.1 knockout aggravated cardiac dysfunction. Kir6.1 regulated the phosphorylation of AKT and Foxo1 in DCM. We further found that Kir6.1 overexpression also improved cardiomyocyte dysfunction and up-regulated the phosphorylation of AKT and FoxO1 in neonatal rat ventricular cardiomyocytes with insulin resistance. Furthermore, FoxO1 activation down-regulated the expression of Kir6.1 and decreased the mitochondrial membrane potential (ΔΨm) in cardiomyocytes. FoxO1 inactivation up-regulated the expression of Kir6.1 and increased the ΔΨm in cardiomyocytes. Chromatin immunoprecipitation assay demonstrated that the Kir6.1 promoter region contains a functional FoxO1-binding site. In conclusion, Kir6.1 improves cardiac dysfunction in DCM, probably through the AKT-FoxO1 signalling pathway.  相似文献   

4.
糖尿病时,肾素-血管紧张素系统(renin-angiotensin system,RAS)被激活,升高的血管紧张素Ⅱ(Ang Ⅱ)通过细胞表面的AT1受体,刺激心肌成纤维细胞增生及胶原代谢改变,引起心脏结构重塑,导致心肌间质及血管周围纤维化,胶原含量增多和排列紊乱,造成心室肌僵硬而影响舒张功能,出现糖尿病心肌病(diabetic cardiomyopathy,DCM)的临床症状.本文从RAS的主要成分Ang Ⅱ、Ang-(1-7)、Ac-SDKP和血管紧张素受体(ATR)与内皮素、活性氧、转化生长因子-β1、核因子-κB、信号转导系统以及细胞凋亡之间的相互作用,阐述RAS在糖尿病心肌病发生发展中所起的重要作用.  相似文献   

5.
Diabetic cardiomyopathy (DCM) is one of the leading causes of heart failure in patients with diabetes mellitus, with limited effective treatments. The cardioprotective effects of sodium-glucose cotransporter 2(SGLT2) inhibitors have been supported by amounts of clinical trials, which largely fills the gap. However, the underlying mechanism still needs to be further explored, especially in terms of its protection against cardiac fibrosis, a crucial pathophysiological process during the development of DCM. Besides, endothelial-to-mesenchymal transition (EndMT) has been reported to play a pivotal role in fibroblast multiplication and cardiac fibrosis. This study aimed to evaluate the effect of SGLT2 inhibitor dapagliflozin (DAPA) on DCM especially for cardiac fibrosis and explore the underlying mechanism. In vivo, the model of type 2 diabetic rats was built with high-fat feeding and streptozotocin injection. Untreated diabetic rats showed cardiac dysfunction, increased myocardial fibrosis and EndMT, which was attenuated after treatment with DAPA and metformin. In vitro, HUVECs and primary cardiac fibroblasts were treated with DAPA and exposed to high glucose (HG). HG-induced EndMT in HUVECs and collagen secretion of fibroblasts were markedly inhibited by DAPA. Up-regulation of TGF-β/Smad signalling and activity inhibition of AMPKα were also reversed by DAPA treatment. Then, AMPKα siRNA and compound C abrogated the anti-EndMT effects of DAPA in HUVECs. From above all, our study implied that DAPA can protect against DCM and myocardial fibrosis through suppressing fibroblast activation and EndMT via AMPKα-mediated inhibition of TGF-β/Smad signalling.  相似文献   

6.
Control db/+ and diabetic db/db mice at 6 and 12 wk of age were subjected to echocardiography to determine whether contractile function was reduced in vivo and restored in transgenic db/db-human glucose transporter 4 (hGLUT4) mice (12 wk old) in which cardiac metabolism has been normalized. Systolic function was unchanged in 6-wk-old db/db mice, but fractional shortening and velocity of circumferential fiber shortening were reduced in 12-wk-old db/db mice (43.8 +/- 2.1% and 8.3 +/- 0.5 circs/s, respectively) relative to db/+ control mice (59.5 +/- 2.3% and 11.8 +/- 0.4 circs/s, respectively). Doppler flow measurements were unchanged in 6-wk-old db/db mice. The ratio of E and A transmitral flows was reduced from 3.56 +/- 0.29 in db/+ mice to 2.40 +/- 0.20 in 12-wk-old db/db mice, indicating diastolic dysfunction. Thus a diabetic cardiomyopathy with systolic and diastolic dysfunction was evident in 12-wk-old diabetic db/db mice. Cardiac function was normalized in transgenic db/db-hGLUT4 mice, indicating that altered cardiac metabolism can produce contractile dysfunction in diabetic db/db hearts.  相似文献   

7.
There is emerging evidence that aldosterone can promote diastolic dysfunction and cardiac fibrosis independent of blood pressure effects, perhaps through increased oxidative stress and inflammation. Accordingly, this investigation was designed to ascertain if mineralocorticoid receptor blockade improves diastolic dysfunction independently of changes in blood pressure through actions on myocardial oxidative stress and fibrosis. We used young transgenic (mRen2)27 [TG(mRen2)27] rats with increases in both tissue ANG II and circulating aldosterone, which manifests age-related increases in hypertension and cardiac dysfunction. Male TG(mRen2)27 and age-matched Sprague-Dawley rats were treated with either a low dose (~1 mg·kg(-1)·day(-1)) or a vasodilatory, conventional dose (~30 mg·kg(-1)·day(-1)) of spironolactone or placebo for 3 wk. TG(mRen2)27 rats displayed increases in systolic blood pressure and plasma aldosterone levels as well as impairments in left ventricular diastolic relaxation without changes in systolic function on cine MRI. TG(mRen2)27 hearts also displayed hypertrophy (left ventricular weight, cardiomyoctye hypertrophy, and septal wall thickness) as well as fibrosis (interstitial and perivascular). There were increases in oxidative stress in TG(mRen2)27 hearts, as evidenced by increases in NADPH oxidase activity and subunits as well as ROS formation. Low-dose spironolactone had no effect on systolic blood pressure but improved diastolic dysfunction comparable to a conventional dose. Both doses of spironolactone caused comparable reductions in ROS/3-nitrotryosine immunostaining and perivascular and interstitial fibrosis. These data support the notion mineralocorticoid receptor blockade improves diastolic dysfunction through improvements in oxidative stress and fibrosis independent of changes in systolic blood pressure.  相似文献   

8.
Hyperhomocysteinemia (Hhe), linked to cardiovascular disease by epidemiological studies, may be an important factor in adverse cardiac remodeling in hypertension. Specifically, convergence of myocardial and vascular alterations promoted by Hhe and hypertension may exacerbate cardiac remodeling and myocardial dysfunction. We studied male spontaneously hypertensive rats fed one of three diets: control, intermediate Hhe inducing, or severe Hhe inducing. After 10 wk of dietary intervention, cardiac function was assessed in vitro, and cardiac and coronary arteriolar remodeling were monitored by histomorphometric, immunohistochemical, and biochemical techniques. Results showed that Hhe induced diastolic dysfunction, as characterized by the diastolic pressure-volume curve, without significant changes in baseline systolic function. Perivascular collagen levels were increased by Hhe, and there was an increase in left ventricular hydroxyproline levels. Myocyte size was not affected. Coronary arteriolar wall thickness increased with Hhe due to smooth muscle hyperplasia. Mast cells increased in parallel with Hhe and collagen accumulation. In summary, 10 wk of Hhe caused coronary arteriolar remodeling, myocardial collagen deposition, and diastolic dysfunction in hypertensive rats.  相似文献   

9.
Abnormal alterations in cardiac expression of vascular endothelial growth factor (VEGF) as well as its receptors and impairment in the development of coronary collaterals have recently been reported in diabetic subjects. However, the presence of pharmacological intervention on these defects in diabetes remains unsettled. Here, we studied the effect of endothelin (ET) receptor blockade on cardiac VEGF signaling pathways and cardiac function in Sprague-Dawley rats 5 wk after induction of type I diabetes with streptozotocin (65 mg/kg ip) in comparison with age-matched control rats. After streptozotocin (1 wk), some diabetic rats were treated with the ET receptor antagonist SB-209670 (1 mg/day) for 4 wk. VEGF, its receptors, and its angiogenic signaling molecules [phosphorylated Akt and endothelial nitric-oxide synthase (eNOS)] were analyzed by Western blot, ELISA, real-time PCR, and immunohistochemistry, and cardiac function was evaluated by echocardiography. Coronary capillary morphology was assessed by lectin and enzymatic double staining. We found significant decreases in cardiac expression of VEGF, its receptors, phosphorylation of Akt and eNOS, and coronary capillary density in diabetic rats compared with controls. Treatment of diabetic rats with SB-209670 reversed these alterations to the control levels and ameliorated impairment of cardiac function. From a molecular point of view, the present study is the first to indicate the potential usefulness of an ET receptor antagonist in the treatment of cardiac dysfunction in type I diabetes.  相似文献   

10.
Emerging evidence suggests that both adult cardiac cell and the cardiac stem/progenitor cell (CSPC) compartments are involved in the patho-physiology of diabetic cardiomyopathy (DCM). We evaluated whether early administration of Resveratrol, a natural antioxidant polyphenolic compound, in addition to improving cardiomyocyte function, exerts a protective role on (i) the progenitor cell pool, and (ii) the myocardial environment and its impact on CSPCs, positively interfering with the onset of DCM phenotype. Adult Wistar rats (n?=?128) with streptozotocin-induced type-1 diabetes were either untreated (D group; n?=?54) or subjected to administration of trans-Resveratrol (i.p. injection: 2.5 mg/Kg/day; DR group; n?=?64). Twenty-five rats constituted the control group (C). After 1, 3 or 8 weeks of hyperglycemia, we evaluated cardiac hemodynamic performance, and cardiomyocyte contractile properties and intracellular calcium dynamics. Myocardial remodeling and tissue inflammation were also assessed by morphometry, immunohistochemistry and immunoblotting. Eventually, the impact of the diabetic "milieu" on CSPC turnover was analyzed in co-cultures of healthy CSPCs and cardiomyocytes isolated from D and DR diabetic hearts. In untreated animals, cardiac function was maintained during the first 3 weeks of hyperglycemia, although a definite ventricular remodeling was already present, mainly characterized by a marked loss of CSPCs and adult cardiac cells. Relevant signs of ventricular dysfunction appeared after 8 weeks of diabetes, and included: 1) a significant reduction in ±dP/dt in comparison with C group, 2) a prolongation of isovolumic contraction/relaxation times, 3) an impaired contraction of isolated cardiomyocytes associated with altered intracellular calcium dynamics. Resveratrol administration reduced atrial CSPC loss, succeeded in preserving the functional abilities of CSPCs and mature cardiac cells, improved cardiac environment by reducing inflammatory state and decreased unfavorable ventricular remodeling of the diabetic heart, leading to a marked recovery of ventricular function. These findings indicate that RSV can constitute an adjuvant therapeutic option in DCM prevention.  相似文献   

11.
12.
To examine whether and how heart ANG II influences the coordination between cardiomyocyte hypertrophy and coronary angiogenesis and contributes to the pathogenesis of diabetic cardiomyopathy, we used Spontaneously Diabetic Torii (SDT) rats treated without and with olmesartan medoxomil (an ANG II receptor blocker). In SDT rats, left ventricular (LV) ANG II, but not circulating ANG II, increased at 8 and 16 wk after diabetes onset. SDT rats developed LV hypertrophy and diastolic dysfunction at 8 wk, followed by LV systolic dysfunction at 16 wk, without hypertension. The SDT rat LV exhibited cardiomyocyte hypertrophy and increased hypoxia-inducible factor-1α expression at 8 wk and to a greater degree at 16 wk and interstitial fibrosis at 16 wk only. In SDT rats, coronary angiogenesis increased with enhanced capillary proliferation and upregulation of the angiogenic factor VEGF at 8 wk but decreased VEGF with enhanced capillary apoptosis and suppressed capillary proliferation despite the upregulation of VEGF at 16 wk. In SDT rats, the phosphorylation of VEGF receptor-2 increased at 8 wk alone, whereas the expression of the antiangiogenic factor thrombospondin-1 increased at 16 wk alone. All these events, except for hyperglycemia or blood pressure, were reversed by olmesartan medoxomil. These results suggest that LV ANG II in SDT rats at 8 and 16 wk induces cardiomyocyte hypertrophy without affecting hyperglycemia or blood pressure, which promotes and suppresses coronary angiogenesis, respectively, via VEGF and thrombospondin-1 produced from hypertrophied cardiomyocytes under chronic hypoxia. Thrombospondin-1 may play an important role in the progression of diabetic cardiomyopathy in this model.  相似文献   

13.
Recent reports including those from our laboratories indicate that hyperhomocysteinemia (Hhe) is an independent risk factor for cardiac dysfunction and clinical heart failure. Mast cell accumulation is a prominent feature in our model of Hhe-induced cardiac dysfunction. Because mast cell-derived mediators can potentially attenuate cardiac remodeling, we investigated the possible protective role of mast cells in Hhe-induced cardiac remodeling using a mast cell-deficient rat model that in our recent report did not demonstrate any adverse cardiac function at younger age (6 mo) than mast cell-competent control animals. Mast cell-deficient (Ws/Ws) rats and mast cell-competent (+/+) littermate control animals (3 mo of age) were treated with a Hhe-inducing diet for 10 wk. Cardiac remodeling was assessed structurally utilizing histomorphometric methods and functionally using an isolated Langendorff-perfused heart preparation. The Hhe-inducing diet caused similar elevations of homocysteine levels in the two groups. Compared with Hhe +/+ rats, the Hhe Ws/Ws rats demonstrated strikingly exacerbated adverse cardiac remodeling and myocardial fibrosis. Cardiac function measurement showed worsened diastolic function in Hhe Ws/Ws rats compared with Hhe +/+ rats. The absence of mast cells strikingly exacerbates Hhe-induced adverse cardiac remodeling and diastolic dysfunction. These findings indicate a potential dual rather than sole deleterious role for mast cells in cardiac injury.  相似文献   

14.
Mitochondrial dysfunction and impaired Ca2+ handling are involved in the development of diabetic cardiomyopathy (DCM). Dynamic relative protein 1 (Drp1) regulates mitochondrial fission by changing its level of phosphorylation, and the Orai1 (Ca2+ release-activated calcium channel protein 1) calcium channel is important for the increase in Ca2+ entry into cardiomyocytes. We aimed to explore the mechanism of Drp1 and Orai1 in cardiomyocyte hypertrophy caused by high glucose (HG). We found that Zucker diabetic fat rats induced by administration of a high-fat diet develop cardiac hypertrophy and impaired cardiac function, accompanied by the activation of mitochondrial dynamics and calcium handling pathway-related proteins. Moreover, HG induces cardiomyocyte hypertrophy, accompanied by abnormal mitochondrial morphology and function, and increased Orai1-mediated Ca2+ influx. Mechanistically, the Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1) prevents cardiomyocyte hypertrophy induced by HG by reducing phosphorylation of Drp1 at serine 616 (S616) and increasing phosphorylation at S637. Inhibition of Orai1 with single guide RNA (sgOrai1) or an inhibitor (BTP2) not only suppressed Drp1 activity and calmodulin-binding catalytic subunit A (CnA) and phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) expression but also alleviated mitochondrial dysfunction and cardiomyocyte hypertrophy caused by HG. In addition, the CnA inhibitor cyclosporin A and p-ERK1/2 inhibitor U0126 improved HG-induced cardiomyocyte hypertrophy by promoting and inhibiting phosphorylation of Drp1 at S637 and S616, respectively. In summary, we identified Drp1 as a downstream target of Orai1-mediated Ca2+ entry, via activation by p-ERK1/2-mediated phosphorylation at S616 or CnA-mediated dephosphorylation at S637 in DCM. Thus, the Orai1–Drp1 axis is a novel target for treating DCM.Subject terms: Molecular biology, Cardiac hypertrophy, Pathogenesis  相似文献   

15.
ABSTRACT: BACKGROUND: Recent studies revealed that erythropoietin (EPO) has tissue-protective effects in the heart by increasing vascular endothelial growth factor (VEGF) expression and attenuating myocardial fibrosis in ischemia models. In this study, we investigated the effect of EPO on ventricular remodeling and blood vessel growth in diabetic rats. METHODS: Male SD rats were randomly divided into 3 groups: control rats, streptozotocin (STZ)-induced diabetic rats, and diabetic rats treated with 1000 U/kg EPO by subcutaneous injection once per week. Twelve weeks later, echocardiography was conducted, and blood samples were collected for counting of peripheral blood endothelial progenitor cells (EPCs). Myocardial tissues were collected, quantitative real-time PCR (RT-PCR) was used to detect the mRNA expression of VEGF and EPO-receptor (EPOR), and Western blotting was used to detect the protein expression of VEGF and EPOR. VEGF, EPOR, transforming growth factor beta (TGF-beta), and CD31 levels in the myocardium were determined by immunohistochemistry. To detect cardiac hypertrophy, immunohistochemistry of collagen type , collagen type , and Picrosirius Red staining were performed, and cardiomyocyte cross-sectional area was measured. RESULTS: After 12 weeks STZ injection, blood glucose increased significantly and remained consistently elevated. EPO treatment significantly improved cardiac contractility and reduced diastolic dysfunction. Rats receiving the EPO injection showed a significant increase in circulating EPCs (27.85+/-3.43%, P < 0.01) compared with diabetic untreated animals. EPO injection significantly increased capillary density as well as EPOR and VEGF expression in left ventricular myocardial tissue from diabetic rats. Moreover, EPO inhibited interstitial collagen deposition and reduced TGF-beta expression. CONCLUSIONS: Treatment with EPO protects cardiac tissue in diabetic animals by increasing VEGF and EPOR expression levels, leading to improved revascularization and the inhibition of cardiac fibrosis. Key words: erythropoietin; vascular endothelial growth factor; diabetes mellitus; endothelial progenitor cell; myocardial interstitial fibrosis; transforming growth factor beta.  相似文献   

16.
To efficiently prevent diabetic cardiomyopathy (DCM), we have explored and confirmed that metallothionein (MT) prevents DCM by attenuating oxidative stress, and increasing expression of proteins associated with glucose metabolism. To determine whether Akt2 expression is critical to MT prevention of DCM, mice with either global Akt2 gene deletion (Akt2-KO), or cardiomyocyte-specific overexpressing MT gene (MT-TG) or both combined (MT-TG/Akt2-KO) were used. Akt2-KO mice exhibited symptoms of DCM (cardiac remodelling and dysfunction), and reduced expression of glycogen and glucose metabolism-related proteins, despite an increase in total Akt (t-Akt) phosphorylation. Cardiac MT overexpression in MT-TG/Akt2-KO mice prevented DCM and restored glucose metabolism-related proteins expression and baseline t-Akt phosphorylation. Furthermore, phosphorylation of ERK1/2 increased in the heart of MT-TG/Akt2-KO mice, compared with Akt2-KO mice. As ERK1/2 has been implicated in the regulation of glucose transport and metabolism this increase could potentially underlie MT protective effect in MT-TG/Akt2-KO mice. Therefore, these results show that although our previous work has shown that MT preserving Akt2 activity is sufficient to prevent DCM, in the absence of Akt2 MT may stimulate alternative or downstream pathways protecting from DCM in a type 2 model of diabetes, and that this protection may be associated with the ERK activation pathway.  相似文献   

17.
Diabetic heart (diabetes mellitus [DM]) has been shown to attenuate the beneficial effect of ischemic preconditioning (IPC) in rat heart. But the effect of IPC on diabetic rat heart that develops myopathy remains unclear. This study was designed to test the impact of IPC on diabetic cardiomyopathy (DCM) rat heart. Male Wistar rats were grouped as (a) normal, (b) DM (streptozotocin: 65 mg/kg; fed with normal diet), and (c) DCM (streptozotocin: 65 mg/kg; fed with high‐fat diet). Isolated rat hearts from each group were randomly subjected to (a) normal perfusion, (b) ischemia‐reperfusion (I/R), and (c) IPC procedure. At the end of the perfusion experiments, hearts were analyzed for injury, contractile function, mitochondrial activity, and oxidative stress. The results obtained from hemodynamics, cardiac injury markers, and caspase‐3 activity showed that DCM rat displayed prominent I/R‐associated cardiac abnormalities than DM rat heart. But the deteriorated physiological performance and cardiac injury were not recovered in both DM and DCM heart by IPC procedure. Unlike normal rat heart, IPC did not reverse mitochondrial dysfunction (determined by electron transport chain enzymes activity, ATP level, and membrane integrity, expression levels of genes like PGC‐1ɑ, GSK3β, complex I, II, and V) in DCM and DM rat heart. The present study demonstrated that IPC failed to protect I/R‐challenged DCM rat heart, and the underlying pathology was associated with deteriorated mitochondrial function.  相似文献   

18.
Previous work has shown that dietary flaxseed can significantly reduce cardiac damage from a coronary artery ligation-induced myocardial infarction. However, this model uses healthy animals and the ligation creates the infarct in an artificial manner. The purpose of this study was to determine if dietary flaxseed can protect the hearts of JCR:LA-cp rats, a model of genetic obesity and metabolic syndrome, from naturally occurring myocardial ischemic lesions. Male and female obese rats were randomized into four groups (n = 8 each) to receive, for 12 weeks, either a) control diet (Con), b) control diet supplemented with 10% ground flaxseed (CFlax), c) a high-fat, high sucrose (HFHS) diet, or d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. In male obese rats, serum total cholesterol and LDL-C were significantly lower in CFlax compared to Con.  Obese rats on HFHS exhibited increased myocardial ischemic lesions and diastolic dysfunction regardless of sex. HFlax significantly lowered the frequency of cardiac lesions and improved diastolic function in male and female obese rats compared to HFHS. Blood pressures were similar in obese and lean rats. No aortic atherosclerotic lesions were detectable in any group. Collectively, this study shows that a HFHS diet increased myocardial ischemic lesion frequency and abolished the protective effect of female sex on cardiac function. More importantly, the data demonstrates dietary flaxseed protected against the development of small spontaneous cardiac infarcts despite the ingestion of a HFHS diet and the presence of morbid obesity.  相似文献   

19.
Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function.  相似文献   

20.
Impaired renal function with loss of nephron number in chronic renal disease (CKD) is associated with increased cardiovascular morbidity and mortality. However, the structural and functional cardiac response to early and mild reduction in renal mass is poorly defined. We hypothesized that mild renal impairment produced by unilateral nephrectomy (UNX) would result in early cardiac fibrosis and impaired diastolic function, which would progress to a more global left ventricular (LV) dysfunction. Cardiorenal function and structure were assessed in rats at 4 and 16 wk following UNX or sham operation (Sham); (n = 10 per group). At 4 wk, blood pressure (BP), aldosterone, glomerular filtration rate (GFR), proteinuria, and plasma B-type natriuretic peptide (BNP) were not altered by UNX, representing a model of mild early CKD. However, UNX was associated with significantly greater LV myocardial fibrosis compared with Sham. Importantly, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining revealed increased apoptosis in the LV myocardium. Further, diastolic dysfunction, assessed by strain echocardiography, but with preserved LVEF, was observed. Changes in genes related to the TGF-β and apoptosis pathways in the LV myocardium were also observed. At 16 wk post-UNX, we observed persistent LV fibrosis and impairment in LV diastolic function. In addition, LV mass significantly increased, as did LVEDd, while there was a reduction in LVEF. Aldosterone, BNP, and proteinuria were increased, while GFR was decreased. The myocardial, structural, and functional alterations were associated with persistent changes in the TGF-β pathway and even more widespread changes in the LV apoptotic pathway. These studies demonstrate that mild renal insufficiency in the rat results in early cardiac fibrosis and impaired diastolic function, which progresses to more global LV remodeling and dysfunction. Thus, these studies importantly advance the concept of a kidney-heart connection in the control of myocardial structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号