首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel polycalconcarboxylic acid (CCA) modified glassy carbon electrode (GCE) was fabricated by electropolymerization and then successfully used to simultaneously determine ascorbic acid (AA), norepinephrine (NE) and uric acid (UA). The characterization of electrochemically synthesized Poly-CCA film was investigated by atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and voltammetric methods. It was found that the electrochemical behavior of the polymer-modified electrode depended on film thickness, i.e., the electropylmyerization time. Based on the electrochemical data, the charge transfer coefficient (alpha) and the surface coverage (Gamma) were calculated. This poly-CCA modified GCE could reduce the overpotential of ascorbic acid (AA), norepinephrine (NE) and uric acid (UA) oxidation in phosphate buffer solution (pH 6.0), while it increases the peak current significantly. The current peak separations of AA/NE, NE/UA and AA/UA on this modified electrode are 91mV, 256mV and 390mV in CV at 100mVs(-1), respectively. Therefore, the voltammetric responses of these three compounds can be well resolved on the polymer-modified electrode, and simultaneously determination of these three compounds can be achieved. In addition, this modified electrode can be successfully applied to determine AA and NE in injection and UA in urine samples without interferences.  相似文献   

2.
Ordered mesoporous carbon (OMC) functionalized with ferrocenecarboxylic acid (Fc) was used to modify the glassy carbon (GC) electrode. The characterization of OMC–Fc shows that, after anchoring ferrocene on the mesoporous, ordered mesostructure of the material (OMC–Fc) remains intact and Fc is electrochemically accessible. The obtained OMC–Fc-modified electrode was used to investigate the electrochemical behavior of uric acid (UA). UA oxidation is catalyzed by this electrode in aqueous buffer solution (pH 7.3) with a decrease of 200 mV in overpotential compared to GC electrode. The detection and determination of UA in the presence of ascorbic acid (AA), the main interferent, were achieved. The voltammetric signals due to UA and AA were well separated with a potential difference of 308 mV, a separation that can allow the simultaneous determination of UA and AA. With amperometric method, at a constant potential of 375 mV, the catalytic current of UA versus its concentration shows a good linearity in the range 60–390 μM (R = 0.998) with a detection limit of 1.8 μM (S/N = 3). These results are not influenced by the presence of AA in the sample solution. With good stability and reproducibility, the present OMC–Fc-modified electrode was applied in the determination of UA content in urine sample and satisfactory results were obtained.  相似文献   

3.
Nitrogen doped graphene (NG) was prepared by thermally annealing graphite oxide and melamine mixture. After characterization by atomic force microscopy and X-ray photoelectron spectroscopy etc., the electrochemical sensor based on NG was constructed to simultaneously determine small biomolecules such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to its unique structure and properties originating from nitrogen doping, NG shows highly electrocatalytic activity towards the oxidation of AA, DA and UA. The electrochemical sensor shows a wide linear response for AA, DA and UA in the concentration range of 5.0×10(-6) to 1.3×10(-3)M, 5.0×10(-7) to 1.7×10(-4)M and 1.0×10(-7) to 2.0×10(-5)M with detection limit of 2.2×10(-6)M, 2.5×10(-7)M and 4.5×10(-8)M at S/N=3, respectively. These results demonstrate that NG is a promising candidate of advanced electrode material in electrochemical sensing and other electrocatalytic applications.  相似文献   

4.
A novel hydrogen peroxide biosensor was fabricated for the determination of H2O2. The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H2O2 in the linear range from 2.6 × 10 6 mol/L to 8.8 × 10 3 mol/L with a detection limit of 6.4 × 10 7 mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

5.
A recently constructed carbon composite electrode using room temperature ionic liquid as pasting binder was employed as a novel electrode for sensitive, simultaneous determination of dopamine (DA), ascorbic acid (AA), and uric acid (UA). The apparent reversibility and kinetics of the electrochemical reaction for DA, AA, and UA found were improved significantly compared to those obtained using a conventional carbon paste electrode. The results show that carbon ionic liquid electrode (CILE) reduces the overpotential of DA, AA, and UA oxidation, without showing any fouling effect due to the deposition of their oxidized products. In the case of DA, the oxidation and reduction peak potentials appear at 210 and 135mV (vs Ag/AgCl, KCl, 3.0M), respectively, and the CILE shows a significantly better reversibility for dopamine. The oxidation peak due to the oxidation of AA occurs at about 60mV. For UA, a sharp oxidation peak at 340mV and a small reduction peak at 250mV are obtained at CILE. Differential pulse voltammetry was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Relative standard deviation for DA, AA, and UA determinations were less than 3.0% and DA, AA, and UA can be determined in the ranges of 2.0x10(-6)-1.5x10(-3), 5.0x10(-5)-7.4x10(-3), and 2.0x10(-6)-2.2x10(-4)M, respectively. The method was applied to the determination of DA, AA, and UA in human blood serum and urine samples.  相似文献   

6.
A stable electroactive thin film of poly(caffeic acid) has been deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. Poly(caffeic acid) was used as a modified electrode for the detection of ascorbic acid (AA), epinephrine (EP), uric acid (UA) and their mixture by cyclic voltammetry. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards AA, EP and UA with activation overpotential. For the ternary mixture containing AA, EP and UA, the three compounds can well separate from each other at the scan rate of 20 mVs(-1) with a potential difference of 156, 132 and 288 mV between AA and EP, EP and UA and AA and UA, respectively, which was large enough to determine AA, EP and UA individually and simultaneously. The catalytic peak current obtained, was linearly dependent on the AA, EP and UA concentrations in the range of 2.0 x 10(-5) to 1.0 x 10(-3) mol l(-1), 2.0 x 10(-6) to 8.0 x 10(-5) mol l(-1) and 5.0 x 10(-6) to 3.0 x 10(-4) mol l(-1), and the detection limits for AA, EP and UA were 7.0 x 10(-6), 2.0 x 10(-7) and 6.0 x 10(-7) mol l(-1), respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of EP in practical injection samples and that of EP, UA and AA simultaneously with satisfactory results.  相似文献   

7.
A novel hydrogen peroxide biosensor was fabricated for the determination of H(2)O(2). The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H(2)O(2) in the linear range from 2.6 x 10(-6) mol/L to 8.8 x 10(-3) mol/L with a detection limit of 6.4 x 10(-7) mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

8.
A chemometric-assisted kinetic spectrophotometric method has been developed for simultaneous determination of ascorbic acid (AA), uric acid (UA), and dopamine (DA). This method relies on the difference in the kinetic rates of the reactions of analytes with a common oxidizing agent, tris(1,10-phenanthroline) and iron(III) complex (ferritin, [Fe(phen)3]3+) at pH 4.4. The changes in absorbance were monitored spectrophotometrically. The data obtained from the experiments were processed by chemometric methods of artificial neural network (ANN) and partial least squares (PLS). Acceptable techniques of prediction set, randomization t test, cross-validation, and Y randomization were applied for the selection of the best chemometric method. The results showed that feedforward artificial neural network (FFANN) is more efficient than the other chemometric methods. The parameters affecting the experimental conditions were optimized, and it was found that under optimal conditions Beer’s law is followed in the concentration ranges of 4.3–74.1, 4.3–78.3, and 2.0–33.0 μM for AA, UA, and DA, respectively. The proposed method was successfully applied to the determination of analytes in serum and urine samples.  相似文献   

9.
Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were prepared by electrospinning and subsequent thermal treatment processes. Pd/CNFs modified carbon paste electrode (Pd/CNF-CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA), uric acid (UA) and ascorbic acid (AA). The oxidation overpotentials of DA, UA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA, UA and AA in their ternary mixture. The peak separation between UA and DA, DA and AA was 148 mV and 244 mV, respectively. The calibration curves for DA, UA and AA were obtained in the range of 0.5-160 microM, 2-200 microM, and 0.05-4mM, respectively. The lowest detection limits (S/N=3) were 0.2 microM, 0.7 microM and 15 microM for DA, UA and AA, respectively. With good selectively and sensitivity, the present method was applied to the determination of DA in injectable medicine and UA in urine sample.  相似文献   

10.
Single-walled carbon nanotube-modified carbon–ceramic electrode (SWCNT/CCE) was employed for the simultaneous determination of acetaminophen (APAP) and ascorbic acid (AA). The SWCNT/CCE displayed excellent electrochemical catalytic activities toward APAP and AA oxidation compared with bare CCE. In the differential pulse voltammetry technique, both AA and APAP gave sensitive oxidation peaks at −62 and 302 mV versus saturated calomel electrode, respectively. Under the optimized experimental conditions, APAP and AA gave linear responses over ranges of 0.2 to 150.0 μM (R2 = 0.998) and 5.0 to 700.0 μM (R2 = 0.992), respectively. The lower detection limits were found to be 0.12 μM for APAP and 3.0 μM for AA. The investigated method showed good stability, reproducibility, and repeatability as well as high recovery in pharmaceutical and biological samples.  相似文献   

11.
A unique bimetallic, nano platinum (Pt) with nano gold (Au) on nafion (NF) incorporated with functionalized multiwall carbon nanotubes (f-MWCNTs) composite film (f-MWCNTs-NF-PtAu) was developed by the potentiostatic method. The composite film exhibits promising efficient catalytic activity towards the oxidation of mixture of biochemical compounds and simultaneous measurement of ascorbate anion, epinephrine and urate anion in aqueous buffer solution (pH 6.75). Both, the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used for the measurement of electroanalytical properties of neurotransmitters by means of composite film modified electrodes. Well-separated voltammetric peaks were obtained for ascorbate, epinephrine and urate anions with the peak separations of 0.222 and 0.131V. The composite film can also be produced on gold and transparent semiconductor indium tin oxide electrodes for different kinds of studies such as electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The incorporation of Pt and Au onto the f-MWCNTs-NF was revealed by the EQCM technique and the morphology of the film was studied using SEM, AFM and scanning electrochemical microscopy (SECM) techniques. Further, extensive studies were carried out using SECM for obtaining the surface current topographic images of composite film modified electrodes, and these indicated the presence of f-MWCNTs-NF-PtAu composite film on the electrode.  相似文献   

12.
A disposable and sensitive screen-printed electrode using an ink containing graphene was developed. This electrode combined the advantages of graphene and the disposable characteristic of electrode, which possessed wide potential window, low background current and fast electron transfer kinetics. Compared with the electrodes made from other inks, screen-printed graphene electrode (SPGNE) showed excellent electrocatalytic activity for the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Three well-defined sharp and fully resolved anodic peaks were found at the developed electrode. Differential pulse voltammetry was used to simultaneous determination of AA, DA, and UA in their ternary mixture. In the co-existence system of these three species, the linear response ranges for the determination of AA, DA, and UA were 4.0-4500 μM, 0.5-2000 μM, and 0.8-2500 μM, respectively. The detection limits (S/N=3) were found to be 0.95 μM, 0.12 μM, and 0.20 μM for the determination of AA, DA, and UA, respectively. Furthermore, the SPGNE displayed high reproducibility and stability for these species determination. The feasibility of the developed electrode for real sample analysis was investigated. Results showed that the SPGNE could be used as a sensitive and selective sensor for simultaneous determination of AA, DA, and UA in biological samples, which may provide a promising alternative in routine sensing applications.  相似文献   

13.
RuOx x nH2O film was electrochemically synthesized conveniently using cyclic voltammetric technique. The film formation was ascertained by the Electrochemical quartz crystal microbalance (EQCM) method and 45 ng of deposit per cycle was obtained. Stoichiometric ratio of the ruthenium and ruthenium oxide have been studied with different pH of phosphate buffer. The stability of the modified electrode in the presence of different cations and anions with different concentrations and pH were examined. Electrochemical studies have shown that the ascorbic acid (AA) and dopamine (DA) catalytic oxidation on ruthenium oxide modified electrode (RME) with a span of 300 mV separation even in the presence of uric acid (UA) with a large decrease in their respective over potential compared with bare glassy carbon electrode (GC). Accidentally, the reversible redox properties of the AA have been expediently studied on the RME using cyclic voltammetry and this peculiarity was interrogated through rotating ring disc electrode (RRDE) experiments. RRDE experiment results are conformed to the CV studies result and thus reversible redox property of AA have been reiterated. Amperometric detection under stirred condition up to approximately 0.8mM of AA and DA was carried out at free of electrode fouling. Interestingly, the regeneration of used RME electrode even after many consequent analysis, 100% was obtained.  相似文献   

14.
A novel biosensor has been constructed by the electrodeposition of Au-nanoclusters (nano-Au) on poly(3-amino-5-mercapto-1,2,4-triazole) (p-TA) film modified glassy carbon electrode (GCE) and employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA), uric acid (UA) and nitrite (NO2). NH2 and SH groups exposed to the p-TA layer are helpful for the electrodeposition of nano-Au. The combination of nano-Au and p-TA endow the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity and flexible and controllable electrodeposition process. In the fourfold co-existence system, the linear calibration plots for AA, DA, UA and NO2 were obtained over the range of 2.1–50.1 μM, 0.6–340.0 μM, 1.6–110.0 μM and 15.9–277.0 μM with detection limits of 1.1 × 10−6 M, 5.0 × 10−8 M, 8.0 × 10−8 M and 8.9 × 10−7 M, respectively. In addition, the modified biosensor was applied to the determination of AA, DA, UA and NO2 in urine and serum samples by using standard adding method with satisfactory results.  相似文献   

15.
In this study, a novel electrochemical sensor for quantification of ascorbic acid with amperometric detection in physiological conditions was constructed. For this purpose, cobalt and nickel ferrites were synthesized using microwave and ultrasound assistance, characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRPD), and used for modification of glassy carbon paste electrode (GCPE). It was shown that introducing these nanoparticles to the structure of GCPE led to increasing analytical performance. Co ferrite modified GCPE (CoFeGCPE) showed better characteristics toward ascorbic acid sensing. The limit of detection (LOD) obtained by sensor was calculated to be 0.0270 mg/L, with linear range from 0.1758 to 2.6010 mg/L. This sensor was successfully applied for practical analysis, and the obtained results demonstrated that the proposed procedure could be a promising replacement for the conventional electrode materials and time-consuming and expensive separation methods.  相似文献   

16.
A novel sensor was fabricated by electrochemical deposition of ZnO flower-like/polyaniline nanofiber/reduced graphene oxide nanocomposite (ZnO/PANI/RGO) on glassy carbon electrode (GCE) for direct detection of dopamine (DA) and uric acid (UA) in the presence of fixed concentration of ascorbic acid (AA). Surface morphology and characterization of the modified electrodes were confirmed by field emission scanning microscopy (FE-SEM), X-ray diffraction (XRD), Raman and FT-IR spectroscopies. For individual detection, the linear responses were in the two concentration ranges of 0.001–1 μM and 1–1000 μM with detection limit 0.8 nM (S/N = 3) for DA, and also 0.1–100 μM and 100–1000 μM with detection limit 0.042 μM (S/N = 3) for UA. Simultaneous determination of these species in their mixture solution showed the linear responses in the two concentration ranges of 0.1–90 μM and 90–1000 μM with detection limit 0.017 μM (S/N = 3) for DA and also showed two linear range of 0.5–90 μM and 100–1000 μM with detection limit 0.12 μM (S/N = 3) for UA, with coexistence of 1000 μM AA. The applicability of sensor for the analysis of DA, and UA in dopamine injection solution, human serum and human urine samples was successfully demonstrated.  相似文献   

17.
Hollow nitrogen-doped carbon microspheres (HNCMS) as a novel carbon material have been prepared and the catalytic activities of HNCMS-modified glassy carbon (GC) electrode towards the electro-oxidation of uric acid (UA), ascorbic acid (AA) and dopamine (DA) have also been investigated. Comparing with the bare GC and carbon nanotubes (CNTs) modified GC (CNTs/GC) electrodes, the HNCMS modified GC (HNCMS/GC) electrode has higher catalytic activities towards the oxidation of UA, AA and DA. Moreover, the peak separations between AA and DA, and DA and UA at the HNCMS/GC electrode are up to 212 and 136 mV, respectively, which are superior to those at the CNTs/GC electrode (168 and 114 mV). Thus the simultaneous determination of UA, AA and DA was carried out successfully. In the co-existence system of UA, AA and DA, the linear response range for UA, AA and DA are 5-30 μM, 100-1000 μM and 3-75 μM, respectively and the detection limits (S/N = 3) are 0.04 μM, 0.91 μM and 0.02 μM, respectively. Meanwhile, the HNCMS/GC electrode can be applied to measure uric acid in human urine, and may be useful for measuring abnormally high concentration of AA or DA. The attractive features of HNCMS provide potential applications in the simultaneous determination of UA, AA and DA.  相似文献   

18.
The electro-oxidation of epinephrine (EP), uric acid (UA), folic acid (FA), and their mixture has been studied by modified carbon nanotube paste electrode of 2,2'-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. This modified electrode exhibited potent and persistent electron mediating behavior followed by well-separated oxidation peaks towards EP, UA and FA with activation overpotential. For the ternary mixture containing EP, UA and FA the three compounds can be well separated from each other at the scan rate of 20mVs(-1). The obtained catalytic peak current, was linearly dependent on the EP, UA and FA concentrations in the range of 0.7-1200muM, 25-750muM and 15-800muM and the detection limits for EP, UA and FA were 0.216+/-0.004, 8.8+/-0.2 and 11.0+/-0.3muM, respectively. The diffusion coefficient (D), and the kinetic parameters such as electron transfer coefficient, (alpha) and heterogeneous rate constant, (k') for EP were also determined using electrochemical approaches. The modified electrode showed good sensitivity, selectivity and stability, and was employed for the determination of EP, UA and FA in the real samples.  相似文献   

19.
In the present study, the graphene nanosheets (GNSs) modified glassy carbon (GC) electrode is employed for simultaneous determination of morphine, noscapine and heroin. To the best of our knowledge this is the first report of the simultaneous determination of these three important opiate drugs based on their direct electrochemical oxidation. Field emission scanning electron microscopy (FESEM) technique is utilized in order to study the surface morphology of the modified electrode. The modified electrode shows excellent electrocatalytic activity toward oxidation of morphine, noscapine and heroin at reduced overpotentials in wide pH range. In the performed experiments, differential pulse voltammetric determination of morphine, noscapine and heroin yields calibration curves with the following characteristics; linear dynamic range up to 65, 40 and 100 μM, sensitivity of 275, 500 and 217 nA μM(-1) cm(-2), and detection limits of 0.4, 0.2 and 0.5 μM at 3S(B), respectively. Fast response time, signal stability, high sensitivity, low cost and ease of preparation method without using any specific electron-transfer mediator or specific reagent are the advantageous of the proposed sensor. The modified electrode can be used for simultaneous or individual detection of three major narcotic components, heroin, noscapine and morphine at micromolar concentration without any separation or pretreatment steps.  相似文献   

20.
This paper demonstrated the selective determination of folic acid (FA) in the presence of important physiological interferents, ascorbic acid (AA) and uric acid (UA) at physiological pH using electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole (p-AMT) modified glassy carbon (GC) electrode. Bare GC electrode fails to determine the concentration of FA in the presence of AA and UA due to the surface fouling caused by the oxidized products of AA and FA. However, the p-AMT film modified electrode not only separates the voltammetric signals of AA, UA and FA with potential differences of 170 and 410 mV between AA–UA and UA–FA, respectively but also shows higher oxidation current for these analytes. The p-AMT film modified electrode displays an excellent selectivity towards the determination of FA even in the presence of 200-fold AA and 100-fold UA. Using amperometric method, we achieved the lowest detection of 75 nM UA and 100 nM each AA and FA. The amperometric current response was increased linearly with increasing FA concentration in the range of 1.0 × 10−7–8.0 × 10−4 M and the detection limit was found to be 2.3 × 10−10 M (S/N = 3). The practical application of the present modified electrode was successfully demonstrated by determining the concentration of FA in human blood serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号