首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
植物MAPK级联途径参与调控ABA信号转导   总被引:3,自引:0,他引:3  
促分裂原活化蛋白激酶(MAPK)级联途径信号通路在真核生物细胞信号的转换和放大过程中起重要作用。MAPK级联途径由三个成员组成,分别是MAPK、MAPKK及MAPKKK,此三个信号组分按照MAPKKK-MAPKK-MAPK的方式依次磷酸化将外源信号级联放大向下传递。大量研究表明,植物MAPK级联途径参与调控脱落酸(ABA)信号转导。因此,该文就ABA和MAPK的生物学功能、ABA信号转导中的磷酸化与去磷酸化以及MAPK级联途径与ABA信号转导之间的关系等方面的研究进展进行综述,以便进一步认识MAPK和ABA信号转导的分子机制。  相似文献   

4.
The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond in an appropriate way. Diverse cellular functions, ranging from differentiation and proliferation to migration and inflammation, are regulated by MAPK signalling. Therefore, cells have developed mechanisms by which this single pathway modulates numerous cellular responses from a wide range of activating factors. This specificity is achieved by several mechanisms, including temporal and spatial control of MAPK signalling components. Key to this control are protein scaffolds, which are multidomain proteins that interact with components of the MAPK cascade in order to assemble signalling complexes. Studies conducted on different scaffolds, in different biological systems, have shown that scaffolds exert substantial control over MAPK signalling, influencing the signal intensity, time course and, importantly, the cellular responses. Protein scaffolds, therefore, are integral elements to the modulation of the MAPK network in fundamental physiological processes.  相似文献   

5.
The mitogen-activated protein kinase (MAP kinase, MAPK) cascade, as the name implies, was originally discovered as a critical regulator of cell division and differentiation. As further details of this signaling cascade were worked out, it became clear that the MAPK cascade is in fact a prototype for a family of signaling cascades that share the motif of three serially linked kinases regulating each other by sequential phosphorylation. Thus, a revised nomenclature arose that uses the term MAPK to refer to the entire superfamily of signaling cascades (comprising the erks, the JNKs and the p38 stress activated protein kinases), and specifies the prototype MAPK as the extracellular signal-regulated kinase (erk). The two erk MAPK isoforms, p44 MAPK and p42 MAPK, are referred to as erk1 and erk2, respectively.The erks are abundantly expressed in neurons in the mature central nervous system, raising the question of why the prototype molecular regulators of cell division and differentiation are present in these non-dividing, terminally differentiated neurons. This review will describe the beginnings of an answer to this question. Interestingly, the general model has begun to emerge that the erk signaling system has been co-opted in mature neurons to function in synaptic plasticity and memory. Moreover, recent insights have led to the intriguing prospect that these molecules serve as biochemical signal integrators and molecular coincidence detectors for coordinating responses to extracellular signals in neurons. In this review I will first outline the essential components of this signal transduction cascade, and briefly describe recent results implicating the erks in mammalian synaptic plasticity and learning. I will then proceed to outline recent results implicating the erks as molecular signal integrators and, potentially, coincidence detectors. Finally, I will speculate on what the critical downstream effectors of the erks are in neurons, and how they might provide a readout of the integrated signal.  相似文献   

6.
Mitogen-activated protein kinase (MAPK) cascades are key signaling modules downstream of receptors/sensors that perceive either endogenously produced stimuli such as peptide ligands and damage-associated molecular patterns (DAMPs) or exogenously originated stimuli such as pathogen/microbe-associated molecular patterns (P/MAMPs), pathogen-derived effectors, and environmental factors. In this review, we provide a historic view of plant MAPK research and summarize recent advances in the establishment of MAPK cascades as essential components in plant immunity, response to environmental stresses, and normal growth and development. Each tier of the MAPK cascades is encoded by a small gene family, and multiple members can function redundantly in an MAPK cascade. Yet, they carry out a diverse array of biological functions in plants. How the signaling specificity is achieved has become an interesting topic of MAPK research. Future investigations into the molecular mechanism(s) underlying the regulation of MAPK activation including the activation kinetics and magnitude in response to a stimulus, the spatiotemporal expression patterns of all the components in the signaling pathway, and functional characterization of novel MAPK substrates are central to our understanding of MAPK functions and signaling specificity in plants.  相似文献   

7.
8.
Several components of mitogen-activated protein kinase (MAPK) cascades have been identified in higher plants and have been implicated in cellular responses to a wide variety of abiotic and biotic stimuli. Our recent work has demonstrated that a MAP kinase cascade is involved in the regulation of cytokinesis in plant cells. The MAP kinase cascade in tobacco includes NPK1 MAPK kinase kinase, NQK1 MAPK kinase, and NRK1 MAPK, and its activation is triggered by the binding of NACK1/2 kinesin-like protein to the NPK1 MAPK kinase kinase at the late M-phase of the cell cycle. We refer to this cascade as the NACK-PQR pathway. In this review, we introduce a mechanism for the regulation of plant cytokinesis, focusing on the role of the NACK-PQR pathway.  相似文献   

9.
Protein kinase C zeta (zeta PKC) is critically involved in the control of a number of cell functions, including proliferation and nuclear factor kappa B (NF-kappa B) activation. Previous studies indicate that zeta PKC is an important step downstream of Ras in the mitogenic cascade. The stimulation of Ras initiates a kinase cascade that culminates in the activation of MAP kinase (MAPK), which is required for cell growth. MAPK is activated by phosphorylation by another kinase named MAPK kinase (MEK), which is the substrate of a number of Ras-activated serine/threonine kinases such as c-Raf-1 and B-Raf. We show here that MAPK and MEK are activated in vivo by an active mutant of zeta PKC, and that a kinase-defective dominant negative mutant of zeta PKC dramatically impairs the activation of both MEK and MAPK by serum and tumour necrosis factor (TNF alpha). The stimulation of other kinases, such as stress-activated protein kinase (SAPK) or p70S6K, is shown here to be independent of zeta PKC. The importance of MEK/MAPK in the signalling mechanisms activated by zeta PKC was addressed by using the activation of a kappa B-dependent promoter as a biological read-out of zeta PKC.  相似文献   

10.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

11.
It is well known that zinc (Zn) is one of the micronutrients essential for normal growth and development of plants. However, the molecular mechanisms responsible for the regulation of plant growth by Zn are still not completely understood. The aim of this study was to investigate the signalling transduction pathways activated by Zn. We show that Zn elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot analysis, we suggest that Zn-activated 40- and 42-kDa MBP kinases are mitogen-activated protein kinases (MAPK). Pre-treatment of rice roots with reactive oxygen species (ROS) scavenger, sodium benzoate, was able to effectively prevent Zn-induced MAPK activation. However, phosphoinositide 3-kinase (PI-3K) inhibitor, LY294002, was unable to inhibit Zn-induced MAPK activation. These results suggest that the ROS may function in the Zn-triggered MAPK signalling pathway in rice roots.  相似文献   

12.
Mitogen-activated protein kinases (MAPKs) are components of a three kinase regulatory cascade. There are multiple members of each component family of kinases in the MAPK module. Specificity of regulation is achieved by organization of MAPK modules, in part, by use of scaffolding and anchoring proteins. Scaffold proteins bring together specific kinases for selective activation, sequestration and localization of signaling complexes. The recent elucidation of scaffolding mechanisms for MAPK pathways has begun to solve the puzzle of how specificity in signaling can be achieved for each MAPK pathway in different cell types and in response to different stimuli. As new MAPK members are defined, determining their organization in kinase modules will be critical in understanding their select role in cellular regulation.  相似文献   

13.
Activation of the mitogen-activated protein kinase (MAPK) cascade gives rise to a neuroprotective effect in a variety of cell types. The bipolar disorder treatment, valproic acid (VPA), increases the activity of this pathway by modulating extracellular signal-regulated kinase 2 (ERK2) phosphorylation through an unknown mechanism. To investigate the molecular basis of this effect, we have used the biomedical model system Dictyostelium discoideum to dissect this signalling pathway. We find that, similar to mammalian systems, VPA causes a transient increase in the activation of the MAPK signalling pathway, as shown by ERK2 phosphorylation. We show that the MAP kinase and phosphatase, protein kinase A (PKA) and glycogen synthase kinase signalling pathways all function in controlling the levels of phospho-ERK2 (pERK2). We find that VPA induces elevated pERK2 levels through attenuation of the PKA signalling pathway. Interestingly, pERK2 levels are also controlled by another bipolar disorder drug, lithium, providing a common effect of these two drugs. This work therefore suggests a conserved pathway in eukaryotes that is targeted by neuroprotective and bipolar disorder drugs and allows us to propose a model for this neuroprotective effect.  相似文献   

14.
Activation of the mitogen-activated protein kinase (MAPK) cascade gives rise to a neuroprotective effect in a variety of cell types. The bipolar disorder treatment, valproic acid (VPA), increases the activity of this pathway by modulating extracellular signal-regulated kinase 2 (ERK2) phosphorylation through an unknown mechanism. To investigate the molecular basis of this effect, we have used the biomedical model system Dictyostelium discoideum to dissect this signalling pathway. We find that, similar to mammalian systems, VPA causes a transient increase in the activation of the MAPK signalling pathway, as shown by ERK2 phosphorylation. We show that the MAP kinase and phosphatase, protein kinase A (PKA) and glycogen synthase kinase signalling pathways all function in controlling the levels of phospho-ERK2 (pERK2). We find that VPA induces elevated pERK2 levels through attenuation of the PKA signalling pathway. Interestingly, pERK2 levels are also controlled by another bipolar disorder drug, lithium, providing a common effect of these two drugs. This work therefore suggests a conserved pathway in eukaryotes that is targeted by neuroprotective and bipolar disorder drugs and allows us to propose a model for this neuroprotective effect.  相似文献   

15.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   

16.
Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management.  相似文献   

17.
Myogenic differentiation is an essential process for the myogenesis in response to various extracellular stimuli. p38 MAPK is a core signalling molecule in myogenic differentiation. The activation of p38 MAPK is required for myogenic differentiation; however, the mechanism for this activation remains undefined. ASK1 is a member of the MAP3K family that activates both JNK and p38 MAPK pathways in response to an array of stresses such as oxidative stress, endoplasmic reticulum stress and calcium influx. Here, we reported that TNFα was significantly released from H9c2 cardiac myoblast in differentiation medium. Furthermore, the oxidant H2O2 acted as a messenger in the TNFα signalling pathway to disrupt the complex of ASK1-Trx, which was followed by the activation of ASK1 in cardiac myogenic differentiation. Subsequently, the activated ASK1 stimulated MKK3/6-p38MAPK signalling cascade to induce specific myogenic differentiation. In addition, exogenous TNFα added to the medium at physiological levels enhanced the ASK1-p38 MAPK signalling pathway through the increased generation of H2O2. Interestingly, inhibition of p38 MAPK abrogated the production of H2O2, suggesting that there might be a positive feedback loop in the myogenic-redox signalling pathway. These results indicate that ASK1 is a new intracellular regulator of activation of the p38 MAPK in cardiac myogenic differentiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号