首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular uptake and subcellular distribution including adduct formation with genomic DNA and uptake into mitochondria of two ruthenium(iii)-based drugs in clinical trials, KP1019 and NAMI-A, and cisplatin, was investigated in cisplatin sensitive and resistant A2780 human ovarian carcinoma cells. These data indicate that reduced metal uptake into mitochondria in combination with increased binding towards low molecular weight components involved in detoxification mechanisms is essential for cisplatin resistance. The ruthenium drugs show distinct differences with respect to cisplatin, especially in the cisplatin resistant cells; in comparison to the sensitive cells, KP1019 exhibits higher cytotoxicity and an only slightly changed metabolism of the drug, whereas NAMI-A treatment results in increased intracellular ruthenium levels and a higher number of ruthenium-DNA adducts. In addition, size exclusion-inductively coupled mass spectrometry indicates that adduct formation with high molecular weight components in the particulate and nuclear fractions is crucial for the therapeutic effect of KP1019 in both cisplatin resistant and sensitive cell lines.  相似文献   

2.
Ascorbic acid has been previously discussed to have antitumor potential through its interaction with transition metal ions such as iron and copper. Furthermore, ascorbic acid may act as a reducing agent for Ru(III) compounds such as indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019), an investigational anticancer drug which is supposed to be activated by reduction, prior to binding to cellular target proteins. Therefore, we investigated the influence of ascorbic acid on the activity of this antitumor metal complex in cell culture studies. We show that co-incubation of equicytotoxic, constant amounts of KP1019 with high concentrations of ascorbic acid (50–700 μM) increases cytotoxicity of the ruthenium anticancer drug in the human colon carcinoma cell line SW480, human cervical carcinoma KB-3-1 cells, and the multidrug-resistant subline KBC-1, whereas addition of low concentrations (2.7–50 μM) has a strong chemoprotective effect in the human colon carcinoma cell line SW480, but not in multidrug-resistant KBC-1 cells. Although cellular uptake of KP1019 is not altered, ascorbic acid induce stronger interaction of the ruthenium compound with DNA both in SW480 cells and under cell-free conditions with plasmid DNA. Even if DNA interactions probably play a subordinate role in vivo given the extensive protein binding of the compound, our data exemplify that ascorbic acid enhances the reactivity of KP1019 with biomolecules. Moreover, we demonstrate that the levels of KP1019-generated reactive oxygen species are markedly decreased by co-incubation with ascorbic acid. Conclusively, our results indicate that application of high doses of ascorbic acid might increase the anticancer effects of KP1019.  相似文献   

3.
KP1019 comprises a class of ruthenium compounds having promising anticancer activity. Here, we investigated the molecular targets of KP1019 using Saccharomyces cerevisiae as a model organism. Our results revealed that in the absence of the N-terminal tail of histone H3, the growth inhibitory effect of KP1019 was markedly enhanced. Furthermore, H3K56A or rtt109Δ mutants exhibit hypersensitivity for KP1019. Moreover, KP1019 evicts histones from the mononucleosome and interacts specifically with histone H3. We have also shown that KP1019 treatment causes induction of Ribonucleotide Reductase (RNR) genes and degradation of Sml1p. Our results also suggest that DNA damage induced by KP1019 is primarily repaired through double-strand break repair (DSBR). In summary, KP1019 targets histone proteins, with important consequences for DNA damage responses and epigenetics.  相似文献   

4.
5.
Elucidating the mode of action and thereby opening the way to the design of chemotherapeutic agents is one of the major goals of metal-based anticancer research. Hydrolysis and DNA binding play an important role for pharmaceutical formulation and for exerting anticancer activity. Herein, for the first time the application of capillary zone electrophoresis–inductively-coupled plasma mass spectrometry (CZE–ICP-MS) for studying the hydrolytic stability and the binding of the ruthenium anticancer drug candidates KP418, KP1019, and RAPTA-C to dGMP is described. RAPTA-C was found to hydrolyze fastest and showed the highest reactivity toward the DNA model compound, whereas KP418 was the most stable compound in both these respects.  相似文献   

6.
To increase electrochemotherapy (ECT) applicability, the effectiveness of new drugs is being tested in combination with electroporation. Among them two ruthenium(III) compounds, (imH)[trans-RuCl4(im)(DMSO-S)] (NAMI-A) and Na[trans-RuCl4(ind)2] (KP1339), proved to possess increased antitumor effectiveness when combined with electroporation. The objective of our experimental work was to determine influence of electroporation on the cytotoxic and antitumor effect of a ruthenium(III) compound with hampered transmembrane transport, (imH)[trans-RuCl4(im)2] (KP418) in vitro and in vivo and to determine changes in metastatic potential of cells after ECT with KP418 in vitro. In addition, platinum compound cisplatin (CDDP) and ruthenium(III) compound NAMI-A were included in the experiments as reference compounds. Our results show that electroporation leads to increased cellular accumulation and cytotoxicity of KP418 in murine melanoma cell lines with low and high metastatic potential, B16-F1 and B16-F10, but not in murine fibrosarcoma cell line SA-1 in vitro which is probably due to variable effectiveness of ECT in different cell lines and tumors. Electroporation does not potentiate the cytotoxicity of KP418 as prominently as the cytotoxicity of CDDP. We also showed that the metastatic potential of cells which survived ECT with KP418 or NAMI-A does not change in vitro: resistance to detachment, invasiveness, and re-adhesion of cells after ECT is not affected. Experiments in murine tumor models B16-F1 and SA-1 showed that ECT with KP418 does not have any antitumor effect while ECT with CDDP induces significant dose-dependent tumor growth delay in the two tumor models used in vivo.  相似文献   

7.
The compounds imidazolium [trans-[RuCl4(1H-imidazole)2] (KP418) and indazolium [trans-RuCl4(1H-indazole)2] (KP1019) both show significant anticancer activity, with the latter recently having completed phase I clinical trials. An important component of this success has been associated with targeted delivery of the complexes to cancer cells by serum proteins. In this study, electron paramagnetic resonance (EPR) measurements, combined with incubation under physiological conditions, and separation of protein-bound fractions, have been used to characterize the interactions of these complexes with human serum albumin (hsA), human serum transferrin (hsTf) apoprotein, and whole human serum. The strong EPR signals observed in these experiments demonstrate that both complexes are primarily retained in the 3+ oxidation state in the presence of serum components. Rapid, noncovalent binding of KP1019 was observed in the presence of both hsA and serum, indicating that the predominant interactions occur within the hydrophobic binding sites of hsA. This sequestering process correlates with the low levels of side effects observed in clinical trials of the complex. At longer incubation times, the noncovalently bound complexes are converted slowly to a protein-coordinated form. Noncovalent interactions are not observed in the presence apo-hsTf, where only slow binding of KP1019 via ligand exchange with the protein occurs. By contrast, hydrophobic interactions of KP418 with hsA only occur with the aquated products of the complex, a process that also dominates in serum. In the presence of apo-hsTf, KP418 interacts directly with the protein through exchange of ligands, as observed with KP1019.  相似文献   

8.
Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A) is just the second ruthenium-based anticancer agent after NAMI-A which was developed to the stage of clinical trials. Important steps in the mode of action of KP1019 are thought to be the binding to the serum protein transferrin and the transport into the cell via the transferrin pathway. Additionally, the selective activation by reduction in the tumor might contribute to the low side effects observed in in vivo studies. Apoptosis is induced at non-toxic levels via the mitochondrial pathway. These features distinguish it from the established platinum anticancer drugs and suggest that different types of cancer might be treatable with this drug. Indeed, promising activity against certain types of tumors, which are not successfully treatable with cisplatin, and only a very low incidence of acquired resistance has been observed in in vitro and in vivo studies. Recently, a clinical phase I trial was finished in which none of the treated patients experienced serious side effects, while disease stabilization in five of six evaluable patients was achieved. In this review, the preclinical and early clinical development of KP1019 - from bench to bedside - is recapitulated.  相似文献   

9.
Ruthenium-indazole complexes are promising anticancer agents undergoing clinical trials. KP1339 is administered intravenously (i.v.), where serum proteins are the first available biological binding partners. In order to gain a better insight into the mode of action, mice were treated with different doses of KP1339 i.v. and sacrificed at different time points. The blood plasma was isolated from blood samples and analyzed by capillary zone electrophoresis (CZE) and size exclusion/anion exchange chromatography (SEC-IC) both combined on-line to inductively coupled plasma-mass spectrometry (ICP-MS). The performance of the analytical methodology was compared and the interaction of KP1339 with mouse plasma proteins characterized in vivo. Interestingly, the samples of the mice treated with 50 mg kg(-1) and terminated after 24 h showed a ca. 4-fold lowered albumin content and increased ruthenation of albumin aggregates as compared to the untreated control group and the 40 mg kg(-1) group. The majority of Ru was bound to albumin and the stoichiometry of the KP1339 protein binding was determined through the molar Ru/S ratio. In general, good agreement of the data obtained with both techniques was achieved and the SEC-IC method was found to be more sensitive as compared to the CZE-ICP-MS approach, whereas the latter benefits from the shorter analysis time and lower sample consumption.  相似文献   

10.
Analogues of KP1019 containing iodinated indazole ligands were prepared to investigate the biological fate of the Ru–N-heterocycle bond in this class of anticancer agents. The new complexes, 5-iodoindazolium trans-tetrachloridobis(5-iodoindazole)ruthen(III)ate (1) and 5-iodoindazolium trans-tetrachlorido(dimethyl sulfoxide)(5-iodoindazole)ruthen(III)ate (3), were characterized by elemental analysis, mass spectrometry and UV–vis spectrophotometry. Tetramethylammonium salts of these complexes (2 and 4) were synthesized and characterized in a similar manner. Half-maximum inhibitory concentrations of 2 and 4 with regard to A549 cells at 24 h were determined on the basis of the dose–response curves derived from real-time cell adhesion impedance measurements and were shown to be in the same range as those determined for KP1019 and NAMI-A using the same method. X-ray fluorescence imaging of single cultured A549 cells treated with 2 or 4 showed that, in both cases, the distribution of ruthenium and iodine was identical, indicating that the Ru–N bonds in the anionic complexes remained intact after incubation in culture medium and subsequent cellular uptake and processing.  相似文献   

11.
The binding of the ruthenium-based anticancer drug candidates KP1019, NAMI-A and RAPTA-T towards different double-stranded oligonucleotides was probed by electrospray ionisation mass spectrometry and compared with that of the widely used platinum-based chemotherapeutics cisplatin, carboplatin and oxaliplatin. It was found that the extent of adduct formation decreased in the following order: cisplatin > oxaliplatin > NAMI-A > RAPTA-T > carboplatin > KP1019. In addition to the characterisation of the adducts formed with the DNA models, the binding sites of the metallodrugs on the oligonucleotides were elucidated employing top-down tandem mass spectrometry and were found to be similar for all the metallodrugs studied, irrespective of the sequence of the oligonucleotide. A strong preference for guanine residues was established.  相似文献   

12.
Carboplatin is a low-molecular-weight anticancer drug that acts by binding to the nuclear DNA of cells. Thus, efficient delivery of the platinum drugs to the nucleus of the cancer cells may enhance the cytotoxicity of the drug. Efficient drug delivery to the nucleus of cancer cells requires three levels of localization: targeting to the cancerous tissue, accumulation in the cancer cells, and intracellular localization in the nucleus. Nuclear localization signals (NLS) are short positively charged basic peptides that actively transport large proteins across the nuclear membrane. We have prepared conjugates in which the NLS is tethered to poly(ethyleneglycol)carboplatin conjugate (NLS-PEG-Pt) and compared their pharmacological properties to those of their untargeted analogues that do not possess the NLS (PEG-Pt). NLS-PEG-Pt conjugates are rapidly internalized into cancer cells and accumulate in the nucleus. Despite their rapid nuclear localization, they form less Pt-DNA adducts than the untargeted analogues, PEG-Pt, and are also less cytotoxic. These results support the hypothesis that carboplatin (unlike cisplatin) may require cytosolic activation prior to its binding to nuclear DNA.  相似文献   

13.
The study of metal complexes for the treatment of cancer diseases has resulted in the identification of some unique properties of ruthenium-based compounds. Among these inorganic-based agents, two of them, namely the ruthenium(III) drugs NAMI-A and KP1019 have undertaken with some success the clinical evaluations of phase I and preliminary phase II trials in patients. Here we highlight the strategies that have led to the discovery of metal-based (NAMI-A and KP1019) and of organometallic (RM175, RAPTA-T, RDC11 and DW1/2) ruthenium-based complexes, and we report their main biological/pharmacological characteristics and expectations for further development.  相似文献   

14.
Formation of adducts between the antitumor ruthenium(III) complex [HInd]trans-[RuCl(4)(Ind)(2)] (KP1019) and the plasma proteins serum albumin and serum transferrin was investigated by UV-vis spectroscopy, for metal-to-protein ratios ranging from 1:1 to 5:1. In both cases, formation of tight metal-protein conjugates was observed. Similar spectroscopic features were observed for both albumin and transferrin derivatives implying a similar binding mode of the ruthenium species to these proteins. Surface histidines are the probable anchoring sites for the bound ruthenium(III) ions in line with previous crystallographic results. In order to assess the stability of the KP1019-protein adducts the influence of pH, reducing agents and chelators was analysed by UV-vis spectroscopy. Notably, there was no effect of addition of EDTA on the UV-vis spectra of the conjugates. The pH-stability was high in the pH range 5-8. Experiments with sodium ascorbate showed that there was just some alteration of selected bands. The implications of the present results are discussed in relation to the pharmacological behavior of this novel class of antitumor compounds.  相似文献   

15.
The promising drug candidate indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) is the second Ru-based anticancer agent to enter clinical trials. In this review, which is an update of a paper from 2006 (Hartinger et al., J. Inorg. Biochem. 2006, 100, 891-904), the experimental evidence for the proposed mode of action of this coordination compound is discussed, including transport into the cell via the transferrin cycle and activation by reduction. The results of the early clinical development of KP1019 are summarized in which five out of six evaluated patients experienced disease stabilization with no severe side effects.  相似文献   

16.
The synthetic flavone flavopiridol can be cytostatic or cytotoxic to mammalian cells, depending on the concentration of the drug and the duration of exposure. It has been shown to inhibit the cyclin-dependent kinase (CDK) family of cell cycle regulatory enzymes. However, the existence of additional potential targets for drug action remains a matter of interest to define. To identify cellular targets, flavopiridol was immobilized. CDKs, particularly CDK 4, bound weakly to immobilized flavopiridol when ATP was absent but not in its presence. Two proteins with molecular weights of 40 kDa and 120 kDa had high affinities to the immobilized flavopiridol independent of the presence of ATP. They were present in all cell lines analyzed: cervical (HeLa), prostate and non-small cell lung carcinoma (NSCLC) cell lines. A 60-kDa protein, which was present only in NSCLC cells and bound similarly well to immobilized flavopiridol, was identified as cytosolic aldehyde dehydrogenase class 1 (ALDH-1). The level of this protein correlated with the resistance of NSCLC cell lines to cytotoxicity caused by 500 nM flavopiridol but not higher flavopiridol concentrations. Despite binding to ALDH-1, there was no inhibition of dehydrogenase activity by flavopiridol concentrations as high as 20 microM and flavopiridol was not metabolized by ALDH-1. The results suggest that high cellular levels of ALDH-1 may reduce cytotoxicity of flavopiridol and contribute to relative resistance to the drug. This is the first report that flavopiridol binds to proteins other than CDKs.  相似文献   

17.
The Ustilago maydis virally encoded KP1 killer toxin   总被引:2,自引:1,他引:1  
Some strains of the plant-pathogenic fungus Ustilago maydis secrete toxins (killer toxins) that are lethal to susceptible strains of the same fungus. There are three well-characterized killer toxins in U. maydis–KP1, KP4, and KP6–which are secreted by the P1, P4, and P6 subtypes, respectively. These killer toxins are small polypeptides encoded by segments of an endogenous, persistent double-stranded RNA (dsRNA) virus in each U. maydis subtype. In P4 and P6, the M2 dsRNA segment encodes the toxin. In this work, the KP1 killer toxin was purified for internal amino acid sequence analysis, and P1M2 was identified as the KP1 toxin-encoding segment by sequence analysis of cDNA clones. The KP1 toxin is a monomer with a predicted molecular weight of 13.4kDa and does not have extensive sequence similarity with other viral anti-fungal toxins. The P1M2 segment is different from the P4 and P6 toxin-encoding dsRNA segments in that the 3’non-coding region of its plus strand has no sequence homology to the 3’ends of the plus strands of P1M1, P4M2, or P6M2.  相似文献   

18.
The adenosine transporter 1 (ENT1) transports nucleosides, such as adenosine, and cytotoxic nucleoside analog drugs. ENT1 is well established to play a role in adenosinergic signaling in the cardiovascular system by modulating adenosine levels. Moderate ethanol consumption is cardioprotective and underlying mechanisms of action are not clear although adenosinergic signaling has been implicated. Here, we show that ethanol (5–200 mM) significantly reduces ENT1-dependent [3H] 2-chloroadenosine uptake (by up to 27 %) in the cardiomyocyte cell line, HL-1. Inhibition or absence of ENT1 is known to be cardioprotective, suggesting that the interaction of ethanol with ENT1 may promote adenosinergic cardioprotective pathways in the cardiovasculature. Ethanol sensitivity of adenosine uptake is altered by pharmacological activation of PKA and PKC. Primary cardiomyocytes from PKCε-null mice have significantly greater sensitivity to inhibition (by approximately 37 %) of adenosine uptake by ethanol than controls. These data suggest that the presence of ethanol may compromise ENT1-dependent nucleoside analog drug cytotoxicity, and indeed, ethanol (5 mM) reduces the cytotoxic effects of gemcitabine (2 nM), an anti-cancer drug, in the human cancer cell line, HTB2. Thus, the pharmacological inhibition of ENT1 by ethanol may contribute to ethanol-dependent cardioprotection but compromise gemcitabine cytotoxicity.  相似文献   

19.
Ruthenium compounds are highly regarded as metallo-drug candidates. Many studies have focused their attention on the interaction between ruthenium complexes with their possible biological targets. The interaction of ruthenium complexes with transport proteins, enzymes and peptides is of great importance for understanding their biodistribution and mechanism of action, therefore, the development of an anti-cancer therapy involving ruthenium complexes has recently shifted from DNA targeting towards protein targeting. With the aim of gaining insight into possible interactions between ruthenium complexes with biologically relevant proteins, we have studied the interaction of cis-dichlorobis(2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complex [Ru(II)(dcbpy)2Cl2], which previously showed good potency in photo-dynamic chemotherapy, with bovine serum albumin (BSA), phospholipase A2 (PLA2) and glutathione (GSH). Binding constants and possible number of binding sites to mentioned proteins and peptide are investigated by ultraviolet–visible spectroscopy and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI TOF MS). The complex binding affinities were in the following order: PLA2 > BSA > GSH. Moreover, genotoxic profile of the complex, tested on peripheral blood lymphocytes as a model system, was also promising.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号