首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protonation constants of several 5-substituted-2-formylpyridine thiosemicarbazones, formation constants for their copper complexes, adduct formation constants of these complexes with ethylenediamine, protonation constants of the copper complexes, and half-wave reduction potentials of the copper and corresponding iron complexes have been determined. The electronic effect of substituents has been examined through the calculation of linear free energy correlations utilizing Hammet substituent constants as the independent parameter in the relationships. The effect of substituents upon the pharmacological properties of thiosemicarbazones is reconsidered here. The current results are used to suggest new experiments involving the reaction of 5-substituted-2-formylpyridine thiosemicarbazonato copper(II) complexes with Ehrlich cells.  相似文献   

2.
The cytotoxic properties of a bis(thiosemicarbazonato) cadmium complex are studied. Preincubation of Ehrlich cells with the complex prevents growth of the ascites tumor in mice. Although the complex inhibits tumor growth without undue initial toxocity, longer-term side effects limit the use of the compound. The complex inhibits incorporation of 3H-thymidine into DNA and the respiration of tumor cells. It is shown in the principal correlation that the complex is more inhibitory of the above biochemical processes than cadmium ion at equal cellular concentrations of the metal. In addition the cellular reactions of the cadmium, zinc, and copper bis(thiosemicarbazonato) complexes are compared. It is shown that subtle chemical differences in their chelate structures appear to be responsible for their marked differences in cellular reactivity.  相似文献   

3.
The synthesis of three bis(thiosemicarbazone) compounds formed by the reaction of benzil with either thiosemicarbazide, 4-methyl-3-thiosemicarbazide or 4-phenyl-3-thiosemicarbazide are reported. The compounds were characterised by NMR spectroscopy, mass spectrometry and in the case of benzil bis(4-methyl-3-thiosemicarbazone) and benzil bis(4-phenyl-3-thiosemicarbazone) by X-ray crystallography. Attempts to purify benzil bis(thiosemicarbazone) and benzil bis (4-methyl-3-thiosemicarbazone) by recrystallisation resulted in the isolation of cyclised products that were characterised by X-ray crystallography. The 3 bis(thiosemicarbazone) compounds were used to synthesise both Cu(II) and Cu(I) complexes. The copper(II) complexes were formed by the reaction of the proligands with copper(II) acetate which gave neutral copper(II) complexes in which the thiosemicarbazone is doubly deprotonated, acting as a dianionic ligand. The copper(II)-benzil bis(4-phenyl-3-thiosemicarbazonato) complex was characterised by X-ray crystallography to show the copper in an essentially square planar N2S2 environment. The copper(I) complexes were synthesised by reacting the bis (thiosemicarbazone) ligands with [Cu(CH3CN)4]PF6 to give cationic complexes. The copper(I)-benzil-bis(thiosemicarbazone) complex was characterised by X-ray crystallography which revealed that the complex was a dimeric dication. Each of the benzil bis(thiosemicarbazone) ligands act as a bidentate N,S donor to each copper(I) atom, forming an overall helical structure in which each copper atom is in a strongly distorted tetrahedral N2S2 environment. Electrochemical measurements show that the copper(II)-benzil bis(thiosemicarbazonato) complex undergoes a reversible reduction at biologically accessible potentials.  相似文献   

4.
The respiration of Ehrlich ascites tumor cells is inhibited by 3-ethoxy-2-oxobutyraldehyde bis (thiosemicarbazanato) copper (II). State 3 oxidative phosphorylation in mitochondria from tumor cells is also inhibited, with the effect more pronounced using glutamate or pyruvate-malate as substrates than with succinate. The disruption of oxidative phosphorylation in bovine heart mitochondria is qualitatively similar. The principal site of inhibition is in coupling site one, energetically between the electron transport site chain and the locus of uncoupling by 2,4-dinitrophenol. This appears to contain thiol groups which are oxidized by the complex. For a series of bis (thiosemicarbazonato) copper complexes, the extent of inhibition of heart mitochondrial oxidative phosphorylation is correlated with the reduction potentials of the complexes and with their in vitro cytotoxic effects against Walker 256 carcinoma tumor cells.  相似文献   

5.
Model compounds of the active site of galactose oxidase have been developed by using new cofactor model ligands, L1H (2-methylthio-4-tert-butyl-6-[{bis(pyridin-2-ylmethyl)amino}methyl]phenol) and L2H (2-methylthio-4-tert-butyl-6-[{bis(6-methylpyridin-2-ylmethyl)amino}methyl]phenol). Treatment of the ligands with copper(II) and zinc(II) perchlorate in the presence of triethylamine followed by anion exchange reaction with NaPF6 or NaBPh4 provided the corresponding copper(II) and zinc(II) complexes, the crystal structures of which have been determined by X-ray crystallographic analysis. All the copper(II) and zinc(II) complexes have been isolated as a dimeric form in which the phenolate oxygen of each ligand acts as the bridging ligand to form a rhombic M2(OAr)2 core (M=Cu or Zn). The dimeric complexes can be converted into the corresponding monomer complexes by the treatment with exogenous ligand such as acetate ion. The redox potential and the spectroscopic features of the monomer complexes have also been examined. Furthermore, the copper(II)- and zinc(II)-complexes of the phenoxyl radical species of the ligands have been generated in situ by the oxidation of the phenolate complexes with (NH4)2[CeIV(NO3)6] (CAN) in CH3CN, and their spectroscopic features have been explored. The structures and physicochemical properties of the phenolate and phenoxyl radical complexes of L1 and L2 have been compared to those of the previously reported copper(II) and zinc(II) complexes of L3 (2-methylthio-4-tert-butyl-6-[{bis(2-pyridin-2-ylethyl)amino}methyl]phenol) in order to get insights into the interaction between the metal ions and the organic cofactor moiety.  相似文献   

6.
Triazole derived Schiff bases and their metal complexes (cobalt(II), copper(II), nickel(II), and zinc(II)) have been prepared and characterized using IR, 1H and 13C NMR, mass spectrometry, magnetic susceptibility and conductivity measurements, and CHN analysis data. The structure of L2, N-[(5-methylthiophen-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, has also been determined by the X-ray diffraction method. All the metal(II) complexes showed octahedral geometry except the copper(II) complexes, which showed distorted octahedral geometry. The triazole ligands and their metal complexes have been screened for their in vitro antibacterial, antifungal, and cytotoxic activity. All the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. It is revealed that all the synthesized complexes showed better activity than the ligands, due to coordination.  相似文献   

7.
Cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes with 5-chlorosalicyladehyde derived Schiff base sulfonamides have been synthesized and characterized. Structure and bonding nature of all the synthesized compounds have been deduced from physical, analytical, and spectral (IR, 1H NMR, 13C NMR, Mass, electronic) data. An octahedral geometry has been proposed for all the metal complexes. The ligands and their metal complexes have been screened for their in vitro antibacterial, antifungal, and cytotoxic properties and results are reported.  相似文献   

8.
Combination agents comprising two different pharmacophores with the same biological target have the potential to show additive or synergistic activity. Bis(thiosemicarbazonato)copper(II) complexes (e.g. 64Cu-ATSM) and nitroimidazoles (e.g. 18F-MISO) are classes of tracer used for the delineation of tumor hypoxia by positron emission tomography (PET). Three nitroimidazole-bis(thiosemicarbazonato)copper(II) conjugates were produced in order to investigate their potential as combination hypoxia imaging agents. Two were derived from the known bifunctional bis(thiosemicarbazone) H2ATSM/A and the third from the new precursor diacetyl-2-(4-N-methyl-3-thiosemicarbazone)-3-(4-N-ethylamino-3-thiosemicarbazone) - H2ATSM/en. Oxygen-dependent uptake studies were performed using the 64Cu radiolabelled complexes in EMT6 carcinoma cells. All the complexes displayed appreciable hypoxia selectivity, with the nitroimidazole conjugates displaying greater selectivity than a simple propyl derivative used as a control. Participation of the nitroimidazole group in the trapping mechanism is indicated by the increased hypoxic uptake of the 2- vs. the 4-substituted 64Cu-ATSM/A derivatives. The 2-nitroimidazole derivative of 64Cu-ATSM/en demonstrated superior hypoxia selectivity to 64Cu-ATSM over the range of oxygen concentrations tested. Biodistribution of the radiolabelled 2-nitroimidazole conjugates was carried out in EMT6 tumor-bearing mice. The complexes showed significantly different uptake trends in comparison to each other and previously studied Cu-ATSM derivatives. Uptake of the Cu-ATSM/en conjugate in non-target organs was considerably lower than for derivatives based on Cu-ATSM/A.  相似文献   

9.
Dinuclear macrocyclic polyamine zinc(II) complexes, which have two cyclen groups linked by flexible spacers, have been synthesized as DNA cleavage agents. The structures of these new dinuclear complexes are consistent with the data obtained from elemental analysis, MS and 1H NMR spectroscopy. The catalytic activity of these dinuclear complexes on DNA cleavage was studied. The results showed that the dinuclear zinc(II) complexes can catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II).  相似文献   

10.
A new ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope) ligand has been synthesized and used for synthesis of copper(II) and zinc(II) complexes of the formula [MCl2(2-bis(pm)Ope)] [M = Cu(II), Zn(II)]. Despite having the same general formula, Cu(II) and Zn(II) complexes are not isostructural. The Zn(II) complex is four coordinated (MCl2N2) forming probably tetrahedral structure whereas the Cu(II) complex of distorted square pyramidal geometry is five coordinated (MCl2ON2). The later compound not only coordinates by two nitrogen atoms of pyridine rings but also by the oxygen atom of pyridin-2-ylmethoxyl residue. The compound (2-bis(pm)Ope) has been obtained as the product of diethyl (pyridin-2-ylmethyl)phosphate’s (2-pmOpe) transestrification. The compounds have been identified and characterized by IR, far-IR, 1H NMR, 31P NMR and elemental analyses. The crystal structure of copper(II) complex i.e. [CuCl2(2-bis(pm)Ope)] has been determined by the X-ray diffraction method. The low temperature magnetic study reveals significant antiferromagnetic interaction between copper centers through the H-bond system.  相似文献   

11.
Abstract

We report studies on the interaction of some zinc(II) and copper(II) complexes of amines and amino acids with poly(dC-dG) and poly(dm5C-dG). Of the zinc complexes the species zinc-tris(2-aminoethyl) amine is found to be the most efficient for inducing Z-DNA giving a mid point at low ionic strength of 1.4μM (poly(dC-dG)) and 44μM (poly(dm5C-dG). While an antagonistic effect on raising the ionic strength is observed, the transition occurs at only 2μM for poly(dm5C-dG) at 150mM NaCl. The most efficient copper(II) complex is that of diethylene triamine, though copper(II) complexes are generally less efficient than zinc(II) complexes. We also report kinetic and thermodynamic studies upon the B-Z transition induced by these complexes. A model is proposed for the interaction of one of the zinc complexes which involves not only direct zinc-DNA binding but also the formation of hydrogen bonds between the metal bond amine groups and the residues adjacent to the coordination site.  相似文献   

12.
Copper(II) complexes with the non-steroidal anti-inflammatory drugs (NSAIDs) naproxen and diclofenac have been synthesized and characterized in the presence of nitrogen donor heterocyclic ligands (2,2′-bipyridine, 1,10-phenanthroline or pyridine). Naproxen and diclofenac act as deprotonated ligands coordinated to Cu(II) ion through carboxylato oxygens. The crystal structures of (2,2′-bipyridine)bis(naproxenato)copper(II), , (1,10-phenanthroline)bis(naproxenato)copper(II), and bis(pyridine)bis(diclofenac)copper(II), have been determined by X-ray crystallography. The UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA with (2,2′-bipyridine)bis(naproxenato)copper(II) exhibiting the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) indicates that the complexes can displace the DNA-bound EB suggesting strong competition with EB. The cyclic voltammograms of the complexes recorded in the presence of CT DNA have shown that the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. The NSAID ligands and their complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the previously reported complexes [Cu2(naproxenato)4(H2O)2], [Cu2(diclofenac)4(H2O)2] and [Cu(naproxenato)2(pyridine)2(H2O)] have been also evaluated. The dinuclear complexes exhibit similar affinity for CT DNA as the 2,2′-bipyridine or 1,10-phenanthroline containing complexes. The pyridine containing complexes exhibit the lowest affinity for CT DNA and the lowest ability to displace EB from its EB-DNA complex.  相似文献   

13.
《Inorganica chimica acta》2007,360(9):2973-2982
Syntheses and crystal structures of two molecular, heteroleptic cadmium complexes with CdS2NO2 and CdS2N2 kernels are described. Bis(tri-tert-butoxysilanethiolate)(1-methylimidazole)cadmium(II) and bis(tri-tert-butoxysilanethiolate)bis(1-methylimidazole)cadmium(II) coexist at equilibrium in chloroform solutions with varying concentrations of bis[bis(tri-tert-butoxysilanethiolate)cadmium(II)] and 1-methylimidazole. The equilibrium is characterized by solution 113Cd NMR spectra. Solid state CP MAS 13C, 29Si, 113Cd NMR data for the complexes are also reported, analyzed and compared with the results obtained for cadmium-substituted proteins. The similarities and differences between the structures of cadmium complexes and their zinc analogues are discussed.  相似文献   

14.
A new series of asymmetric salicyl-, furanyl-, thienyl- and pyrrolyl-derived ONNO, NNNO, ONNS & NNNS donor antibacterial and antifungal Schiff-bases and their copper(II) and zinc(II) metal complexes have been synthesized and characterized. IR spectra indicated the ligands to act as quartdentate towards divalent metal ions via two azomethine-N, deprotonated-O of salicyl, furanyl-O, thienyl-S and/or pyrrolyl-N. The magnetic moments and electronic spectral data suggest octahedral geometry for Cu(II) and Zn(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against B. cereus, C. diphtheriae, E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, S. typhi, S. dysenteriae and S. aureus strains and for in-vitro antifungal activity against T. schoenleinii, C. glabrata, P. boydii, C. albicans, A. niger, M. canis and T. mentagrophytes. The results of these studies show the metal complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. Eight compounds, L4, (1), (7), (8), (11), (17), (19) and (23) displayed potent cytotoxic activity with LD50 = 1.445 × 10? 3, 1.021 × 10? 3, 7.478 × 10? 4, 8.566 × 10? 4, 1.028 × 10? 3, 9.943 × 10? 4, 8.730 × 10? 4 and 1.124 × 10? 3 M respectively, against Artemia salina.  相似文献   

15.
The diamine bis-α-benzildioximate iron(II) clathrochelate with two inherent NH2-groups at one of the three ribbed fragments was obtained in a high yield by nucleophilic substitution of the dichlorine-containing macrobicyclic precursor with liquid ammonia. These amino-groups have an essential amide character and undergo deprotonation in the presence of strong bases. The resulted clathrochelate dianion behaves as an acido-ligand and coordinates to copper(II) ion giving the heteronuclear copper(II)-iron(II) complexes with the Cu(N)4 coordination polyhedron. The reaction of this dianion with benzil afforded the clathrochelate product with annulated heterocyclic ribbed piperazinone fragment as a result of benzilic-type rearrangement with 1,2-shift of the phenyl substituent.The complexes obtained have been characterized using elemental analysis, MALDI-TOF, IR, UV-Vis, multinuclear NMR and EPR spectra, and X-ray crystallography. N6-coordination polyhedra of their encapsulated iron(II) ions possess a distorted trigonal-prismatic geometry.  相似文献   

16.
A new series of four biologically active triazole derived Schiff base ligands (L1L4) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (116) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.  相似文献   

17.
The reaction of the tripod ligand hydrotris(2-mercapto-1-imidazolyl)borate Tmxylyl with zinc(II) perchlorate in methanol afforded the mononuclear complex of the type [Tmxylyl-Zn(mimxylyl)]ClO4 (1). Whereas under the same conditions, the reaction with copper(II) perchlorate gives rise to the simultaneous formation of the dinuclear copper(I) complex [TmxylylCu]2 (2). The chemical formulae of the complexes have been characterized by elemental chemical analysis, IR-NMR spectroscopies, and single crystal X-ray methods. In complex 1, the zinc(II) atom displays a distorted tetrahedral environment. While in complex 2, the Tmxylyl ligand bridges the two copper(I) atoms in an asymmetric manner with trigonal geometry. The inverted conformation of the ligand Tmxylyl at the boron center, allows the B-H units to be directed towards the copper centers. The greater reactivity of the borohydride groups towards metal centers enhances the reduction of Cu(II) to Cu(I). The obtained kinetic results for the methylation reactions of 1 and 2 indicate that these bound thione complexes are less suitable to electrophilic attack than the thiolate ligand.  相似文献   

18.
Copper and zinc play important roles in Alzheimer disease pathology with recent reports describing potential therapeutics based on modulation of metal bioavailability. We examined the ability of a range of metal bis(thiosemicarbazonato) complexes (MII(btsc), where M=CuII or ZnII) to increase intracellular metal levels in Chinese hamster ovary cells overexpressing amyloid precursor protein (APP-CHO) and the subsequent effect on extracellular levels of amyloid-beta peptide (Abeta). The CuII(btsc) complexes were engineered to be either stable to both a change in oxidation state and dissociation of metal or susceptible to intracellular reduction and dissociation of metal. Treatment of APP-CHO cells with stable complexes resulted in elevated levels of intracellular copper with no effect on the detected levels of Abeta. Treatment with complexes susceptible to intracellular reduction increased intracellular copper levels but also resulted in a dose-dependent reduction in the levels of monomeric Abeta. Treatment with less stable ZnII(btsc) complexes increased intracellular zinc levels with a subsequent dose-dependent depletion of monomeric Abeta levels. The increased levels of intracellular bioavailable copper and zinc initiated a signaling cascade involving activation of phosphoinositol 3-kinase and c-Jun N-terminal kinase. Inhibition of these enzymes prevented Abeta depletion induced by the MII(btsc) complexes. Inhibition of metalloproteases also partially restored Abeta levels, implicating metal-driven metalloprotease activation in the extracellular monomeric Abeta depletion. However, a role for alternative metal-induced Abeta metabolism has not been ruled out. These studies demonstrate that MII(btsc) complexes have potential for Alzheimer disease therapy.  相似文献   

19.
The dihydrobis(3-carboxyethyl-5-methylpyrazolyl)borate ligand, BpCOOET,Me, reacts with divalent metals to yield complexes of general type [(BpCOOET,Me)2M], where M = Mn(II), Fe(II), Co(II), Ni(II), Zn(II), Cu(II), Pb(II) and Cd(II). All complexes have been fully characterized by elemental analyses and FT-IR in the solid state and by NMR (1H and 113Cd NMR) spectroscopy and electrospray ionization mass spectrometry in solution. A single crystal structural characterization is reported for [Cu(BpCOOET,Me)2] and [Zn(BpCOOET,Me)2]. In the two complexes, both metals are four-coordinated and they are only bound to the nitrogen atoms of the bis(pyrazolyl)borate ligand; however, while the environment of the copper atom is square planar, that of the zinc center shows a tetrahedral distorted conformation.  相似文献   

20.
The reaction of copper(II) complexes supported by a series of beta-diketiminate ligands ((R1,R2)L, [(Dipp)N-C(R(2))-C(R(1))-C(R(2))-N(Dipp)](-), Dipp=2,6-diisopropylphenyl; see ) and H(2)O(2) has been examined spectroscopically at a low temperature. The beta-diketiminatocopper(II) complexes with R(2)=H (no substituent on the beta-carbon) provided a copper-oxygen intermediate that exhibited the same spectroscopic features as those of the bis(mu-oxo)dicopper(III) complex generated by the reaction of corresponding beta-diketiminatocopper(I) complex and O(2). On the other hand, the beta-diketiminatocopper(II) complexes with methyl substituent on the beta-carbon (R(2)=Me) did not produce such an intermediate in the same reaction. The beta-diketiminatocopper(II) complexes carrying an electron-withdrawing substituent on the alpha-carbon (R(1)=NO(2) or CN) but no beta-substituent (R(2)=H) exhibited a high catalytic activity in the oxygenation reaction of alkanes with H(2)O(2). Mechanism of the catalytic oxygenation reaction as well as the substituent effects of the ligands on the copper(II)-H(2)O(2) reactivity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号