首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature-sensitive Drosophila mutation, l(3)c21RRW630 (abbreviated RW630), has been previously shown to have biochemical as well as developmental defects. To analyze further the relationship between the biochemical and developmental defects, recombinational mapping, deletion analysis, and complementation studies with other l(3)c21R alleles were performed. These experiments showed that the biochemical and developmental defects in RW630 can be attributed to a single mutation. Four non-temperature-sensitive l(3)c21R alleles were found to have biochemical defects similar to those seen in RW630 at restrictive temperature. In RW630 and in these four other l(3)c21R alleles, the severity of expression of the biochemical and the developmental defects was closely correlated. Temperature-shift studies of the expression of the RW630 maternal lethal effect on embryogenesis in females transheterozygous for RW630 and other l(3)c21R alleles yielded results which indicated that these defects must accumulate over a period of time before the maternal lethal effect can be detected. These data provide further support for the hypothesis that defects in protein modification produce developmental defects in l(3)c21R mutants.  相似文献   

2.
3.
敖政  刘德武  蔡更元  吴珍芳  李紫聪 《遗传》2016,38(5):402-410
克隆又称体细胞核移植(Somatic cell nuclear transfer, SCNT),该技术已在多种哺乳动物中成功建立并被逐渐应用。然而,利用该技术获得的哺乳动物克隆胚胎的发育效率非常低(一般只有1%~5%),这严重限制了克隆技术的应用。胎盘发育缺陷被认为是抑制克隆胚胎发育的一个主要原因。几乎所有的SCNT来源胎盘都会出现不同的发育缺陷,如胎盘增生、胎盘血管缺陷、脐带畸形等。胎盘异常的根本原因是滋养层细胞基因组在发育过程中未能建立正确的表观遗传修饰,导致胎盘发育调控相关的重要基因,特别是印迹基因的表达出现异常。印迹基因表达异常导致胎盘的形态异常和功能缺陷,进而影响克隆胚胎的发育能力。目前,虽然有许多提高克隆胚胎发育能力的研究报道,然而在大多数研究中克隆效率并没有得到大幅度的提高,主要原因之一是克隆胚胎的胎盘发育仍然存在诸多缺陷。本文综述了克隆哺乳动物的胎盘异常及其印迹基因表达,并对未来提高克隆效率的研究提出展望。  相似文献   

4.
A type of intraspecific hybrid sterility, between two strains of Drosophila melanogaster, referred to as GD (gonadal dysgenesis) sterility, is observed when females from a type of strain called M are crossed with males from a second type called P. Absence of egg-laying is characteristic of female GD sterility and its manifestation is conditional on high developmental temperatures. Morphological and cytological studies of GD sterile females are described. These individuals were normal in body size and external appearance. No defects in sperm storage were observed. Both adult and larval ovaries were drastically reduced in size in comparison with control ovaries. This ovarian dysgenesis was sometimes unilateral, but more frequently it was bilateral, particularly in females developing at the highest test temperature. The ovarioles of dysgenic ovaries contained no vitellaria; the germaria lacked any cells resembling the cystocyte clusters of normal ovaries. It is concluded that sterility results from an early blockage in ovarian development, rather than from atrophy of previously developed structures. Possible mechanisms for this developmental arrest are discussed.  相似文献   

5.
In order to identify the biological roles of protein-linked oligosaccharides, we have isolated mutants by a selection for amoebae with temperature-sensitive defects in glycan assembly and processing. Of these, 75% were also temperature sensitive for development [Boose and Henderson, 1986]. Two such mutants with distinct developmental phenotypes and glycosylation patterns are described. Mutant HT7 cannot complete aggregation at the restrictive temperature and is defective in expression of EDTA-resistant cohesion. The biochemical defect appears to be early in glycan processing. A revertant of HT7 has recovered aggregation capability, EDTA-resistant cohesion, and reverted almost totally to wild-type glycosylation. Mutant HT15 aggregates at the restrictive temperature but then disperses into a cell lawn. It is less deficient in EDTA-resistant cohesion than HT7 and has a different glycosylation profile. These results provide strong support for a role of protein N-linked oligosaccharides in aggregation-stage intercellular cohesion.  相似文献   

6.
Oocyte developmental competence is progressively obtained during pubertal development in females. Poor developmental potential in oocytes derived from prepubertal females suggests that essential processes required for oocyte development have not been fulfilled. The objective of this experiment was to analyze the protein profiles of porcine cumulus–oocyte complexes (COC) derived from cyclic and prepubertal females to identify alterations in protein abundance that correlate with developmental potential. COC complexes, aspirated from prepubertal and cyclic ovaries, were pooled into three replicates of 400 COCs each per treatment in ~100 µl SOF‐HEPES medium. Protein samples were extracted and analyzed by two‐dimensional differential in gel electrophoresis (2D‐DIGE). Over 1,600 proteins were resolved on each of the three replicate gels. Sixteen protein spots were identified by mass spectrometry, representing 14 unique, differentially expressed proteins (volume ratio greater than 1.3). Glutathione‐S‐transferase and pyruvate kinase 3 were more abundant in COCs derived from cyclic females, whereas soluble epoxide hydrolase and transferrin were more abundant in prepubertal derived COCs. Abundance of several glycolytic enzymes (enolase 1, pyruvate kinase 3, and phosphoglycerate kinase) was increased in COCs derived from cyclic females, suggesting glucose metabolism is decreased in prepubertal derived COCs. We conclude that the abundance of proteins involved in metabolism and oxidative stress regulation is significantly altered in prepubertal derived COCs and may play a role in the mechanisms resulting in developmental competence. Mol. Reprod. Dev. 77: 51–58, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
Analysis of the developmental capacities of androgenetic and gynogenetic mouse embryos (bearing two paternal or two maternal pronuclei, respectively) revealed a defect in blastocyst formation of androgenetic, but not gynogenetic, embryos that was a function of the maternal genotype. Androgenetic embryos constructed using fertilized eggs from C57BL/6 or (B6D2)F1 mice developed to the blastocyst stage at frequencies similar to those previously reported, whereas androgenetic embryos constructed with fertilized eggs from DBA/2 mice developed poorly, the majority failing to progress beyond the 16-cell stage and unable to form a blastocoel-like cavity, regardless of whether the male pronuclei were of C57BL6 or DBA/2 origin. This impaired development was observed even in androgenetic embryos constructed by transplanting two male pronuclei from fertilized DBA/2 eggs to enucleated C57BL/6 eggs, indicating that the defect cannot be explained as the lack of some essential component in the DBA/2 cytoplasm that might otherwise compensate for androgeny. Rather, the DBA/2 egg cytoplasm apparently modifies the incoming male pronuclei differently than does C57BL/6 egg cytoplasm. Several specific alterations in the protein synthesis pattern of DBA/2 androgenones were observed that reflect a defect in the regulatory mechanisms that normally modulate the synthesis of these proteins between the 8-cell and blastocyst stages. These results are consistent with a model in which cytoplasmic factors present in the egg direct a strain-dependent modification of paternal genome function in response to epigenetic modifications (genomic imprinting) established during gametogenesis and indicate that preimplantation development can be affected by these modifications at both the morphological and biochemical levels.  相似文献   

9.
10.
The deadlock gene is required for a number of key developmental events in Drosophila oogenesis. Females homozygous for mutations in the deadlock gene lay few eggs and those exhibit severe patterning defects along both the anterior-posterior and dorsal-ventral axis. In this study, we analyzed eggs and ovaries from deadlock mutants and determined that deadlock is required for germline maintenance, stability of mitotic spindles, localization of patterning determinants, oocyte growth and fusome biogenesis in males and females. Deadlock encodes a novel protein which colocalizes with the oocyte nucleus at midstages of oogenesis and with the centrosomes of early embryos. Our genetic and immunohistological experiments point to a role for Deadlock in microtubule function during oogenesis.  相似文献   

11.
12.
Homozygous Drosophila females bearing the ocelliless mutation are sterile and produce oocytes with abnormal chorions. It has been possible to determine in which tissues these defects reside by generating ovarian chimeras. Pole cells from ocelliless female embryos can give rise to functional oocytes surrounded by normal chorions when placed in a wild-type environment. Conversely, when wild-type pole cells are placed in homozygous ocelliless females, the oocytes that form from them have abnormal chorions and never give rise to progeny. Thus the chorion defect and sterility of the ocelliless mutation are not germ-line autonomous. Homozygous ocelliless ovaries will attach to the uterus when placed in a wild-type third instar larva, but few eggs are ever laid, and the chorions of stage 14 oocytes remain ocelliless in morphology. Wild-type ovaries continue to produce oocytes with normal chorion morphology when placed into ocelliless hosts, indicating that the ocelliless chorion defect is ovary autonomous. Thus the chorion defect of the ocelliless mutation resides in the ovarian somatic tissue, presumably the follicle cells.  相似文献   

13.
E A Ivanova 《Ontogenez》1975,6(3):251-256
The content of estrogens was determined in tissues of the guinea pig embryos, blood of pregnant females and placenta by means of biological testing. It was the highest in embryonic ovaries at all developmental stages. The sexual dimorphism in estrogen content was found in embryonic suprarenals: it was higher in females than in males. The estrogen content in blood of male embryos and pregnant females was similar but lower than that in female embryos. Estrogens were also found in placenta and their traces were detected in spleen, brain, hypothalamus and uterus. The problem of possible participation of estrogens in the sex differentiation of female embryos is discussed.  相似文献   

14.
Lipid modification of proteins by the addition of myristic acid to the N-terminal is important in a number of critical cellular processes, for example, signal transduction and the modulation of membrane association by myristoyl switches. Myristic acid is added to proteins by the enzyme N-myristoyltransferase (NMT) and in this paper we detail the effects on embryonic development of a null mutation in the Drosophila NMT gene. Mutant embryos display a range of phenotypes, including failures of head involution, dorsal closure, and germ-band retraction, morphogenetic processes that require cellular movements. Embryos with milder phenotypes have more specific defects in the central nervous system, including thinning of the ventral nerve chord and, in some embryos, specific scission at parasegment 10. Staining of mutant embryos with phalloidin shows that the mutant embryos have a disrupted actin cytoskeleton and abnormal cell morphology. These phenotypes are strikingly similar to those caused by genes involved in dynamic rearrangement of the actin cytoskeleton. For example the myristoylated nonreceptor tyrosine kinases Dsrc42A and Dsrc64B were shown recently to be key regulators of dorsal closure. In addition, analysis of cell death reveals widespread ectopic apoptosis. Our findings are consistent with the hypothesis that the myristoyl switches and signaling pathways characterized at the biochemical level have important functions in fundamental morphogenetic processes.  相似文献   

15.
The Drosophila developmental mutation quartet causes late larval lethality and small imaginal discs and, when expressed in the adult female, has a lethal effect on early embryogenesis. These developmental defects are associated with mitotic defects, which include a low mitotic index in larval brains and incomplete separation of chromosomes in mitosis in the early embryo. quartet mutations also have a biochemical effect, i.e., a basic shift in isoelectric point in three proteins. We have purified one of these proteins, raised an antibody to it, and isolated and sequenced its cDNA. At the amino acid level, the sequence shows 68% identity and 81% similarity to bovine smg p25a GDP dissociation inhibitor (GDI), a regulator of ras-like small GTPases of the rab/SEC4/YPT1 subfamily. The correlation between a basic shift in isoelectric point in Drosophila GDI in quartet mutant tissue and the quartet developmental phenotype raises the possibility that a posttranslational modification of GDI is necessary for its function and that GDI function is essential for development.  相似文献   

16.
To identify potential markers of maturation quality, differences in developmental capacity between cow and calf oocytes were compared in parallel with their constitutive and neosynthetic protein profiles before and after in vitro maturation (IVM). A comparison was also made between the protein profiles of follicular fluid (FF) from calf and cow ovaries. The effect of epidermal growth factor (EGF) during IVM on the subsequent development of prepubertal calf oocytes was examined. The effect of the presence of fetal calf serum (FCS) during development of embryos originating from calf oocytes was also examined. No differences were noted between the constitutive proteins of cow and calf oocytes and only a minor modification was observed before IVM in the pattern of neosynthesized proteins (presence of a band of 37 kD and a slight increase in the intensity of band of 78 kD in cow as compared to calf oocytes). However, the comparison of constitutive protein profiles from calf and cow FF demonstrated quantitative (the bands of 34 and 45 kD were more intense for cow than for calf) differences. EGF receptors (EGF-R) were demonstrated on cumulus—oocytes complexes (COCs) by immunofluorescence. There was no difference in intensity between cow and calf COCs. Furthermore, the addition of EGF during IVM of calf oocytes dramatically stimulated cumulus expansion and significantly increased the cleavage rate at 72 h post-insemination (82% vs 67%), as well as the proportion of embryos at the 5- to 8-cell stage at this time (54% vs 43%). Also, blastocyst yields at day 6 (11% vs 5%) and at day 8 (17% vs 10%) were significantly higher in the presence of EGF P < 0.05). The addition of FCS to synthetic oviduct fluid droplets at day 2 of culture (48 hpi) had no effect on cleavage, blastocyst yield, or blastocyst cell number. In conclusion, differences in developmental ability between calf and cow oocytes would appear to be not solely linked to differences in oocyte protein patterns. It is likely that the FF, which constitutes the microenvironment in which the oocyte develops, plays a major modulating role in determining the fate of the oocyte/follicle. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Storage proteins of interior spruce ( Picea glauca engelmanii complex) somatic embryos were compared to those of zygotic embryos by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Somatic embryos contain the same storage proteins as zygotic embryos based on similarities of molecular weight, isoelectric variants, solubility characteristics and disulfide linkages. Storage protein levels varied among different somatic embryo genotypes; however, all genotypes tested accumulated significant amounts of storage proteins. Zygotic and somatic embryos display a similar developmental accumulation of storage proteins. The 22, 24, 33 and 35 kDa proteins appear in early stage embryos, while the 41 kDa protein begins to accumulate during mid cotyledon development. The 22, 24 and 41 kDa proteins accumulate continuously during cotyledon development in somatic embryos cultured on abscisic acid. In contrast, zygotic embryos display a more rapid and transient accumulation of these proteins.  相似文献   

18.
Our previous studies have shown that oocytes collected from prepubertal calves lack developmental competence. The overall objective of this study was to assess causes by comparing biochemical and physiologic changes during in vitro maturation of oocytes collected from ovaries of adult cattle at slaughter and from superstimulated calves (<6 mo old) by either laporotomy or ultrasound-guided follicular aspiration. Activity and/or concentrations of maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK), and inositol 1,4,5-trisphosphate receptor (IP(3)R) were determined by measuring phosphorylation of histone H-1 kinase, phosphorylation of myelin basic protein, or Western blotting, respectively, and were compared between oocytes collected from calves and for those collected from cows. The activities of MPF and MAPK and the relative amount of IP(3)R were significantly lower in calf oocytes. The physiologic significance of these observations was determined by assessing the developmental potential of embryos derived by reciprocal transfer of metaphase II (M-II) chromosomes between cow and calf ooplasts and transfer of adult cumulus cells (G0/G1) into cow and calf ooplasts. Procedural controls consisted of transfer of M-II between adult oocytes and parthenogenic activation of adult and calf oocytes. Adult parthenogenically activated oocytes cleaved and developed to blastocysts at a higher rate than did similarly activated calf oocytes (42.1% vs. 3.4%, P < 0.05). Cleavage was also higher in reciprocal M-II transfer embryos containing adult ooplasm (46.2% vs. 12.0%, P < 0.05). Cleavage (66.7% vs. 21.9%, P < 0.05) and development to blastocyst (20.1% vs. 4.8%, P < 0.05) of nuclear transfer embryos reconstructed from adult cumulus cells was higher after transfer to adult ooplasts. Collectively, these results support the hypothesis that lack of developmental competence of calf oocytes is due to their failure or inability to complete ooplasmic maturation.  相似文献   

19.
Social castes of eusocial insects may have arisen through an evolutionary modification of an ancestral reproductive ground plan, such that some adults emerge from development physiologically primed to specialize on reproduction (queens) and others on maternal care expressed as allo-maternal behaviour (workers). This hypothesis predicts that variation in reproductive physiology should emerge from ontogeny and underlie division of labour. To test these predictions, we identified physiological links to division of labour in a facultatively eusocial sweat bee, Megalopta genalis. Queens are larger, have larger ovaries and have higher vitellogenin titres than workers. We then compared queens and workers with their solitary counterparts-solitary reproductive females and dispersing nest foundresses-to investigate physiological variation as a factor in caste evolution. Within dyads, body size and ovary development were the best predictors of behavioural class. Queens and dispersers are larger, with larger ovaries than their solitary counterparts. Finally, we raised bees in social isolation to investigate the influence of ontogeny on physiological variation. Body size and ovary development among isolated females were highly variable, and linked to differences in vitellogenin titres. As these are key physiological predictors of social caste, our results provide evidence for developmental caste-biasing in a facultatively eusocial bee.  相似文献   

20.
The Drosophila mutation, quartet, affects development at points in the life cycle that require intense mitotic activity. Examination of embryos affected by the maternal effect of quartet has revealed defects that can be attributed to incomplete chromosome separation at mitosis. These defects include uneven spacing of nuclei, strands of DNA creating bridges between nuclei, and abnormal amounts of DNA per nucleus. Nuclei in quartet-affected embryos also have a greater-than-normal number of centrosomes. Immunofluorescent examination of the spindles in quartet-affected embryos has revealed tripolar spindles and adjacent spindles that share a common spindle pole. Finally, chromosome separation distance was measured in anaphase and telophase spindles in quartet-affected embryos and found to be blocked in anaphase. Examination of mitotic figures in quartet larvae revealed a reduced mitotic index and an elevated frequency of abnormal mitotic figures. quartet could encode a function necessary for the disengagement of chromosomes in mitosis, for kinetochore function or for function of a spindle motor. Mutations in quartet prevent the post-translational modification of three abundant proteins. These proteins may be involved in chromosome separation in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号