首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reproductive response of Rhincalanus gigas to the build up of a phytoplankton bloom in the Southern Ocean was studied during the European iron fertilization experiment (EIFEX). Egg production experiments were conducted over a period of approximately 5 weeks during development of a diatom dominated bloom. R. gigas showed a clear response to increasing chlorophyll a concentrations and the total egg production of the R. gigas population was highest just after the peak of the bloom at day 29 after fertilization. The average peak production was 50 eggs female−1 day−1. The percentage of egg producing females increased from about 0 to 90% during the course of the experiment. Accordingly, the maturation of the gonads reflected the positive response towards enhanced chlorophyll a concentrations. The fast reproductive response indicate that R. gigas was food limited during the period of this study in the Antarctic Polar Front region (APF).  相似文献   

2.
The hydrophilic and hydrophobic properties of single cells of natural bacterioplankton communities were determined using a recently developed staining method combined with confocal laser scanning microscopy and advanced image analysis. On an average, about 50% of the bacterial cell area was covered by hydrophobic and only 16% by hydrophilic properties, while about 72% was covered by the genome. However, the size of these properties was independent of the bacterial cell size. Bacterial hydrophobicity was positively correlated with ambient NH(4)(+) concentrations and negatively correlated with overall bacterial abundance. The expression of hydrophilicity was more dynamic. Over the spring phytoplankton bloom, the bacterioplankton ratio(phil/phob) repeatedly reached highest values shortly before peaks in bacterioplankton abundance were observed, indicating a direct and fast response of bacterial surface properties, especially hydrophilicity, to changing environmental conditions. Compared to bacterial strains, recently studied with the same method, cells of marine bacterioplankton communities are much smaller and less frequently covered by hydrophobic or hydrophilic properties. While the percentage area covered by the genome is essentially the same, the percentage area covered by hydrophobic or hydrophilic properties is much smaller.  相似文献   

3.
Phytoplankton is composed of a broad-sized spectrum of phylogenetically diverse microorganisms. Assessing CO2-fixation intra- and inter-group variability is crucial in understanding how the carbon pump functions, as each group of phytoplankton may be characterized by diverse efficiencies in carbon fixation and export to the deep ocean. We measured the CO2-fixation of different groups of phytoplankton at the single-cell level around the naturally iron-fertilized Kerguelen plateau (Southern Ocean), known for intense diatoms blooms suspected to enhance CO2 sequestration. After the bloom, small cells (<20 µm) composed of phylogenetically distant taxa (prymnesiophytes, prasinophytes, and small diatoms) were growing faster (0.37 ± 0.13 and 0.22 ± 0.09 division d−1 on- and off-plateau, respectively) than larger diatoms (0.11 ± 0.14 and 0.09 ± 0.11 division d−1 on- and off-plateau, respectively), which showed heterogeneous growth and a large proportion of inactive cells (19 ± 13%). As a result, small phytoplankton contributed to a large proportion of the CO2 fixation (41–70%). The analysis of pigment vertical distribution indicated that grazing may be an important pathway of small phytoplankton export. Overall, this study highlights the need to further explore the role of small cells in CO2-fixation and export in the Southern Ocean.Subject terms: Biogeochemistry, Biogeochemistry, Stable isotope analysis, Microbial ecology  相似文献   

4.
Variations of phytoplankton assemblages were studied in November–December 2001, in surface waters of the Southern Ocean along a transect between the Sub-Antarctic Zone (SAZ) and the Seasonal Ice Zone (SIZ; 46.9°–64.9°S; 142°–143°E; CLIVAR-SR3 cruise). Two regions had characteristic but different phytoplankton assemblages. Nanoflagellates(<20 μm) and pico-plankton (∼2 μm) occurred in similar concentrations along the transect, but were dominant in the SAZ, Sub-Antarctic Front (SAF), Polar Front Zone (PFZ) and the Inter-Polar Front Zone (IPFZ), (46.9°–56.9°S). Along the entire transect their average cell numbers in the upper 70 m of water column, varied from 3 × 105 to 1.1 × 106 cells l−1. Larger cells (>20 μm), diatoms and dinoflagellates, were more abundant in the Antarctic Zone-South (AZ-S) and the SIZ, (60.9°–64.9°S). In AZ-S and SIZ diatoms ranged between 2.7 × 105 and 1.2 × 106 cells l−1, dinoflagellates from 3.1 × 104 to 1.02 × 105 cells l−1. A diatom bloom was in progress in the AZ-S showing a peak of 1.8 × 106 cells l−1. Diatoms were dominated by Pseudo-nitzschia spp., Fragilariopsis spp., and Chaetoceros spp. Pseudo-nitzschia spp. outnumbered other diatoms in the AZ-S. Fragilaropsis spp. were most numerous in the SIZ. Dinoflagellates contained autotrophs (e.g. Prorocentrum) and heterotrophs (Gyrodinium/Gymnodinium, Protoperidinium). Diatoms and dinoflagellates contributed most to the cellular carbon: 11–25 and 17–124 μg C l−1, respectively. Small cells dominated in the northern region characterized by the lowest N-uptake and new production of the transect. Larger diatom cells were prevalent in the southern area with higher values of N-uptake and new production. Diatom and nanoflagellate cellular carbon contents were highly correlated with one another, with primary production, and productivity related parameters. They contributed up to 75% to the total autotrophic C biomass. Diatom carbon content was significantly correlated to nitrate uptake and particle export, but not to ammonium uptake, while flagellate carbon was well correlated to ammonium uptake, but not to export. Diatoms have contributed highly to particle export along the latitudinal transect, while flagellates played a minor role in the export.  相似文献   

5.
Lagrangian studies of virus activity in pelagic environments over extended temporal scales are rare. To address this, viruses and bacteria were examined during the course of a natural phytoplankton bloom in the pelagic South Pacific Ocean east of New Zealand. Daily samples were collected in a mesoscale eddy from year days 263-278 (September 19th-October 4th, 2008). The productive bloom transitioned from a diatom to a pico- and nanoplankton-dominated system, resulting in chlorophyll a concentrations up to 2.43?μg?L(-1) . Virus abundances fluctuated c.?10-fold (1.8?×?10(10) -1.3?×?10(11) L(-1) ) over 16?days. The production rates of virus particles were high compared with those reported in other marine systems, ranging from 1.4?×?10(10) to 2.1?×?10(11) L(-1) day(-1) . Our observations suggest viruses contributed significantly to the mortality of bacteria throughout the bloom, with 19-216% of the bacterial standing stock being lysed daily. This mortality released nutrient elements (N, Fe) that likely helped sustain the bloom through the sampling period. Parametric analyses found significant correlations with both biotic (e.g. potential host abundances) and abiotic parameters (e.g. nutrient concentrations, temperature). These observations demonstrate that viruses may be critical in the extended maintenance of regeneration-driven biological production.  相似文献   

6.
During the ANTARES 3 cruise in the Indian sector of the SouthernOcean in October–November 1995, the surface waters ofKerguelen Islands plume, and the surface and deeper waters (30–60m) along a transect on 62°E from 48°36'S to the iceedge (58°50'S), were sampled. The phytoplankton communitywas size-fractionated (2 µm) and cell numbers, chlorophyllbiomass and carbon assimilation, through Rubisco and ß-carboxylaseactivities, were characterized. The highest contribution of<2 µm cells to total biomass and total Rubisco activitywas reported in the waters of the Permanent Open Ocean Zone(POOZ) located between 52°S and 55°S along 62°E.In this zone, the picophytoplankton contributed from 26 to 50%of the total chlorophyll (a + b + c) with an average of 0.09± 0.02 µg Chl l–1 for <2 µm cells.Picophytoplankton also contributed 36 to 64% of the total Rubiscoactivity, with an average of 0.80 ± 0.30 mg C mg Chla–1 h–1 for <2 µm cells. The picophytoplanktoncells had a higher ß-carboxylase activity than largercells >2 µm. The mixotrophic capacity of these smallcells is proposed. From sampling stations of the Kerguelen plume,a relationship was observed between the Rubisco activity perpicophytoplankton cell and apparent cell size, which variedwith the sampled water masses. Moreover, a depth-dependent photoperiodicityof Rubisco activity per cell for <2 µm phytoplanktonwas observed during the day/night cycle in the POOZ. In thenear ice zone, a physiological change in picophytoplankton cellsfavouring phosphoenolpyruvate carboxykinase (PEPCK) activitywas reported. A species succession, or an adaptation to unfavourableenvironmental conditions such as low temperature and/or availableirradiance levels, may have provoked this change. The high contributionof picophytoplankton to the total biomass, and its high CO2fixation capacity via autotrophy and mixotrophy, emphasize thestrong regeneration of organic materials in the euphotic layerin the Southern Ocean.  相似文献   

7.
  1. Understanding the successional patterns of microbial communities during a phytoplankton bloom is crucial for predicting the compositional and functional stability of lake ecosystems in response to the disturbance of a bloom. Previous studies on bacterial communities associated with blooms have rarely studied the dynamics of these communities. The successional patterns of bacterial communities within different micro-habitats (i.e. water column versus particles) and mechanisms that shape these communities that differ in composition and structure remain unclear.
  2. We selected a eutrophic urban lake to investigate the succession of bacterial communities during a bloom. We divided the bacterial communities into free-living (FL) and particle-attached (PA) groups based on their different lifestyles. The amplicon-based 16S rRNA gene high-throughput sequencing technology was used to obtain bacterial community composition and phylogenetic structure.
  3. Our study showed distinct successional patterns between FL and PA bacterial communities, and the two bacterial lifestyles showed different responses and resilience to the bloom, in terms of diversity and relative abundance of bacterial taxa. Alpha-diversity of the PA bacterial community decreased during the bloom, whereas that of the FL bacterial community increased. More taxa in the FL bacterial community showed resilience after the disturbance than in the PA bacterial community.
  4. The influence of phytoplankton blooms on the assembly of the bacterial community can be viewed as niche selection that led to the decrease in the relative importance of stochastic processes in shaping both FL and PA bacterial communities. This study shows the ecological significance of the bacterial community response to bloom events in lakes. It also shows that assembly processes differ for bacterial communities that have different lifestyles in lake ecosystems disturbed by phytoplankton blooms.
  相似文献   

8.
Phytoplankton form the base of marine food webs and are a primary means for carbon export in the Southern Ocean, a key area for global pCO2 drawdown. Viral lysis and grazing have very different effects on microbial community dynamics and carbon export, yet, very little is known about the relative magnitude and ecological impact of viral lysis on natural phytoplankton communities, especially in Antarctic waters. Here, we report on the temporal dynamics and relative importance of viral lysis rates, in comparison to grazing, for Antarctic nano- and pico-sized phytoplankton of varied taxonomy and size over a full productive season. Our results show that viral lysis was a major loss factor throughout the season, responsible for roughly half (58%) of seasonal phytoplankton carbon losses. Viral lysis appeared critically important for explaining temporal dynamics and for obtaining a complete seasonal mass balance of Antarctic phytoplankton. Group-specific responses indicated a negative correlation between grazing and viral losses in Phaeocystis and picoeukaryotes, while for other phytoplankton groups losses were more evenly spread throughout the season. Cryptophyte mortality was dominated by viral lysis, whereas small diatoms were mostly grazed. Larger diatoms dominated algal carbon flow and a single ‘lysis event’ directed >100% of daily carbon production away from higher trophic levels. This study highlights the need to consider viral lysis of key Antarctic phytoplankton for a better understanding of microbial community interactions and more accurate predictions of organic matter flux in this climate-sensitive region.Subject terms: Microbial ecology, Virus-host interactions  相似文献   

9.
Organisms of the Roseobacter clade are an important component in marine ecosystems, partially due to their metabolic variety. Not much is known, however, about the physiological diversity of different roseobacters present within one habitat. By using serial dilution cultures with low-nutrient media seven roseobacter strains, co-occurring during a phytoplankton bloom in the southern North Sea, were obtained in this study. Physiological characterization exhibited distinct substrate spectra of the isolates. Although no isolate showed growth on algal osmolyte dimethylsulfoniopropionate (DMSP), feeding experiments revealed that all new strains converted [2H6]DMSP into a variety of volatile compounds. Six strains mainly decomposed DMSP via the demethylation pathway, but four strains were also capable of cleaving DMSP to DMS and acrylate. It is hypothesized that the great physiological diversity of the roseobacters reflects their ability to inhabit different ecological niches and enables the organisms to cope differently with changing substrate supplies during phytoplankton blooms. Denaturing gradient gel electrophoresis and sequencing of excised bands resulted in detection of five additional roseobacters. Three of these sequences showed affiliation with three of the four major clusters of the Roseobacter clade, consisting predominantly of uncultured organisms (i.e. the Roseobacter clade-affiliated (RCA)), the NAC11-7 and the CHAB-I-5 clusters.  相似文献   

10.
11.
Aim Deep‐sea pelagic diversity is poorly understood. Local (SL) and regional (SR) ichthyonekton species richness are presented and analysed with respect to local and regional environmental factors, and biogeographical processes. Location Sixty‐six stations from the Atlantic Ocean and adjacent sector of the Southern Ocean, 65° N to 57° S. Methods Estimation of SL by means of rarefaction. Stepwise evaluation of SL and SR relationships by means of the second‐order corrected Akaike information criterion (AICc) after locally weighted scatterplot smoothing (LOESS) and linear fitting, analysis of saturation effects by means of slopes of species accumulation curves (log–log plots). Results Latitudinal gradients were present for SL and SR, and were asymmetric between the Northern and Southern hemispheres. Relatively low species richness was encountered for the Southern Ocean. Asymmetry at the regional level by means of higher SR was attributed to area effects in the South Atlantic. Log–log plots indicated saturation of local assemblages and dependence on environmental factors. SL was related to productivity; this relationship was hump‐shaped. SR was positively related to area size and negatively to seasonality of production. Biogeographical effects were indicated in that SR peaks coincided with overlap zones of boreal and tropical faunas as a consequence of historical faunal exchange processes. Main conclusions The stepwise approach allowed for distinction between effects of area size, productivity and biogeographical processes on diversity at local and regional scales. Productivity in particular is important in two ways. At the local scale, the link of productivity to SL is explained by a successional‐functional hypothesis of resource utilization, whereas the seasonality effect for SR reinforces the hypothesis of dependence of deep‐sea fishes on seasonality of production through changes of life‐history traits. The causes of low Antarctic faunal diversity remained unresolved.  相似文献   

12.
13.
三江平原湿地保护区内外的生态功能差异   总被引:2,自引:0,他引:2  
湿地保护区是一类特殊的陆地保护区,其保护效果不仅取决于内部的管理强度,还受到其周边地区水文状况的强烈影响,因此保护区内外生态功能的差异程度是评价其保护效果的一个综合性指标.根据三江平原建三江管局2004年Landsat-TM影像解译的土地利用图以及2002年1∶50000数字高程(DEM)数据,利用基于Arcview3.2软件的SWAT水文模型获得各湿地保护区的汇水区作为其水文敏感区.在此基础上,利用专家咨询和有关湿地生态系统服务功能价值的研究结果,计算出各湿地保护区及其水文敏感区的湿地生态功能指数.结果表明,国家级保护区的湿地生态功能普遍优于地方级保护区,而其水文敏感区的湿地生态功能则并不一定优于地方级保护区的水文敏感区.通过对各保护区及其水文敏感区的湿地生态功能指数相对值进行聚类分析和相关分析可知,位于浓江-别拉洪河流域且毗邻的几个保护区的湿地生态功能相对状况较为接近,地方级保护区与其水文敏感区的湿地生态功能指数之间存在高度正相关.这充分说明湿地保护区的管理强度很大程度上决定了其保护效果.  相似文献   

14.
Recent global environmental changes such as an increase in sea surface temperature (SST) are likely to impact primary productivity of phytoplankton in the Southern Ocean. However, models to estimate net primary production using satellite data use SST and uncertain estimation of chlorophyll a (chl-a) concentration. A primary productivity model for satellite ocean color data from the Southern Ocean, which is based on the light absorption coefficient of phytoplankton to reduce uncertainties of sea surface chl-a estimations and bias in optimal values of chl-a normalized productivity derived from SST, has been developed. The new model was able to estimate net primary productivity in the water column (PP eu) without dependency on temperature when in the range of −2 to 25°C, and it explained 51% of the observed variability in PP eu with a root mean square error (RMSE) of 0.15. Application of the model revealed that the SST dependent model has overestimated PP eu in warmer waters around the Subtropical Front, and underestimated PP eu in colder waters poleward of the Sub-Antarctic Front. This absorption-based primary productivity model contributes to a study of the relationship among spatio-temporal variations in the physical environment, and biogeochemical cycles in the Southern Ocean.  相似文献   

15.
Phytoplankton in the mixed layer is exposed to increasing levels of light when transported to the surface layer of the ocean. The photoprotective response of natural assemblages of phytoplankton can differ among community structures. We investigated photoprotective acclimation and xanthophyll cycle pigments in size-fractionated natural phytoplankton assemblages during the austral summer in the Indian sector of the Southern Ocean. We estimated concentrations of phytoplankton pigments in the micro-size fractions (>20 μm) and nano-size fractions (2–20 μm) by subtracting concentrations in the <20 μm fractions from concentrations in the bulk samples, and by subtracting concentrations in the <2 μm fractions from concentrations in the <20 μm fractions, respectively. Changes in the ratios of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (DT) were determined at three optical depths in the mixed layer and during 48 h deck incubations under solar photosynthetically available radiation and ultraviolet radiation. Large variations in (DD + DT)/Chl a in the mixed layer (percent coefficient of variation >67 %) and in deck incubation bottles under variable light conditions (>75 % of the temporal variation) for the micro-size fractions suggest a higher potential for photoprotective acclimation than for the nano-size fractions. Decreases in DT/(DD + DT) with increases in the optical depth of the mixed layer (ζ MLD) suggest that larger variations in light availability in the mixed layer might predict lower values of DT/(DD + DT) at the surface, regardless of cell size.  相似文献   

16.
From November 1992 to February 1995 a quantitative and qualitative phytoplankton study was conducted at a permanent station (Kerfix) southwest off the Kerguelen Islands, in the vicinity of the Polar Front (50°40′S–68°25′E). Phytoplankton populations are low in this area both during summers and winters. They consist, in order of decreasing cell abundance, of pico- and nanoflagellates (1.5–20 μm), coccolithophorids (<10 μm), diatoms (5–80 μm) and dinoflagellates (6–60 μm). Flagellates form the dominant group throughout the year and attain the highest summer average of 3.0 × 105 cells l−1. Next in abundance year-round are coccolithophorids with the dominant Emiliania huxleyi (highest summer 1992 average 1.9 × 105 cells l−1), diatoms (summer 1992 average 1.0 × 105 cells l−1) and dinoflagellates (average 3.8 × 104 cells l−1). Winter mean numbers of flagellates and picoplankton do not exceed 8.4 × 104 cells l−1; those of the three remaining algal groups together attain 2 × 104 cells l−1. Summer peaks of diatoms and dinoflagellates are mainly due to the larger size species (>20 μm). The latter group contributes most to the total cell carbon biomass throughout the year. Dominant diatoms during summer seasons include: Fragilariopsis kerguelensis, Thalassionema nitzschioides, Chaetoceros dichaeta, C. atlanticus, Pseudonitzschia heimii, and P. barkleyi/lineola. This diatom dominance structure changes from summer to summer with only F. kerguelensis and T. nitzschioides retaining their first and second positions. Any one of the co-dominant species might be absent during some summer period. The variable diatom community structure may be due to southward meandering of the Polar Front bringing “warmer” species from the north, and to the mixing of the water masses in this area. The entire community structure characterized both during summer and winters by the dominance of flagellates can be related to deep mixing (ca. 40–200 m) of the water column as the probable controlling factor. Received: 13 November 1997 / Accepted: 11 May 1998  相似文献   

17.
Bacterial community composition, enzymatic activities, and carbon dynamics were examined during diatom blooms in four 200-liter laboratory seawater mesocosms. The objective was to determine whether the dramatic shifts in growth rates and ectoenzyme activities, which are commonly observed during the course of phytoplankton blooms and their subsequent demise, could result from shifts in bacterial community composition. Nutrient enrichment of metazoan-free seawater resulted in diatom blooms dominated by a Thalassiosira sp., which peaked 9 days after enrichment ( approximately 24 microg of chlorophyll a liter(-1)). At this time bacterial abundance abruptly decreased from 2.8 x 10(6) to 0.75 x 10(6) ml(-1), and an analysis of bacterial community composition, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments, revealed the disappearance of three dominant phylotypes. Increased viral and flagellate abundances suggested that both lysis and grazing could have played a role in the observed phylotype-specific mortality. Subsequently, new phylotypes appeared and bacterial production, abundance, and enzyme activities shifted from being predominantly associated with the <1.0-microm size fraction towards the >1.0-microm size fraction, indicating a pronounced microbial colonization of particles. Sequencing of DGGE bands suggested that the observed rapid and extensive colonization of particulate matter was mainly by specialized alpha-Proteobacteria- and Cytophagales-related phylotypes. These particle-associated bacteria had high growth rates as well as high cell-specific aminopeptidase, beta-glucosidase, and lipase activities. Rate measurements as well as bacterial population dynamics were almost identical among the mesocosms indicating that the observed bacterial community dynamics were systematic and repeatable responses to the manipulated conditions.  相似文献   

18.
Protected areas such as forest reserves are often assumed to be best ways to conserve biodiversity and maintain intact ecosystems. We examined woody plant composition and diversity in the gallery forest and savannah woodland habitats of Amurum Forest Reserve and areas immediately surrounding it in Jos, Nigeria. A total of 100 10 × 10 m sample plots were established inside and outside the reserve. All woody plants ≥1 cm diameter at breast height (dbh) were identified and measured. A total of 7,564 individual plants categorized as 134 species from 44 families were recorded. Overall species diversity was significantly higher in the Forest Reserve than outside the reserve, although more species were encountered outside the reserve. Our findings suggest that, protected areas and the areas surrounding them are important for the conservation of biodiversity as the areas outside protected areas also contain species of conservation value. The continuous degrading areas outside protected areas isolates them and poses a serious threat to the long‐term viability of wildlife populations, so it is important that biodiversity in protected areas and their surrounding areas be conserved.  相似文献   

19.
A large (1200 1) seawater sample from the Gulf of Maine waskept under constant temperature and light conditions for a periodof 72 h. Circadian variations were observed in the photosyntheticcapacity (PBmax) and efficiency (B); these occurred in phase,and were not related to changes in chlorophyll concentrations.Such observations are consistent with the hypothesis that oscillationsin photosynthetic characteristics of natural phytoplankton aremediated by an endogenous circadian rhythm. 1 Bigelow Laboratory contribution 87023 and a contribution tothe programs of GIROQ (Groupe interuniversitaire de recherchesoceanographiques du Québec) and of the Maurice-LamontagneInstitute  相似文献   

20.
This study investigates the dynamics of phytoplankton communities and nitrogen uptake in the Indian sector of the Southern Ocean during spring and summer. The study area is oligotrophic (Chl a stocks <50 mg m−2); nevertheless, a large spatial variation of phytoplankton biomass and community structure was observed. During both seasons the phytoplankton community in the seasonal ice zone showed higher biomasses and was mainly composed of large diatom cells. However, in the permanently open ocean zone the community had low biomass and was chiefly composed of nano- and picoflagellates. In the polar front zone, although biomass was higher, the community structure was similar to the open ocean zone. The results suggest that the variation in phytoplankton community structure on a larger scale resonates with gradients in water column stability and nutrient distribution. However, significant changes in biomass and nutrient stocks but little change in community structure were observed. Absolute nitrogen uptake rates were generally low, but their seasonal variations were highly significant. During spring the communities displayed high specific nitrate uptake (mean rate = 0.0048 h−1), and diatoms (in the seasonal ice zone) as well as nano- and picoflagellates (in the permanently open ocean zone and polar front zone) were mainly based on new production (mean ƒ-ratio = 0.69). The transition to summer was accompanied by a significant reduction in nitrate uptake rate (0.0048 h−1 → 0.0011 h−1) and a shift from predominantly new to regenerated production (ƒ-ratio 0.69 → 0.39). Ammonium played a major role in the seasonal dynamics of phytoplankton nutrition. The results emphasize that, despite a large contrast in community structure, the seasonal dynamics of the nitrogen uptake regime and phytoplankton community structure in all three subsystems were similar. Additionally, this study supports our previous conclusion that the seasonal shift in nitrogen uptake regime can occur with, as well as without, marked changes in community structure. Received: 2 December 1997 / Accepted: 20 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号