首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The regulation of endogenous protein phosphorylation by parathyroid hormone (PTH) was investigated using confluent monolayer cultures of chick kidney cells. Homogenates and subcellular fractions of PTH (bovine 1-34)-treated cells were subjected to an endogenous protein phosphorylation assay using ((gamma- 32P]ATP in the presence or absence of 2.0 microM cAMP or 0.5 mM Ca2+ with 25 micrograms/ml of phosphatidylserine and reactions terminated with sodium dodecyl sulfate. In other experiments, cultures were incubated in a phosphate-free 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-buffered saline containing 50 muCi/ml of [32P]PO4 and incubations were terminated with sodium dodecyl sulfate. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Cyclic AMP stimulated 32P incorporation into proteins having molecular weights of 17,000, 22,000, 35,000, 42,000, 54,000, 75,000, 80,000, 120,000, and 143,000. Calcium-phosphatidylserine stimulated the phosphorylation of proteins of 20,000, 52,000, 58,000, 60,000, and 143,000. The protein phosphorylation patterns in cultured kidney cells and freshly isolated kidney tissue were quite similar. Treatment of cultured cells with 5-50 ng/ml of PTH resulted in stimulated phosphorylation of the 35,000 and 42,000 dalton proteins as assessed by endogenous phosphorylation in homogenates. In intact cells incubated with [32P]PO4, PTH stimulated most noticeably the phosphorylation of the 35,000-dalton protein. Based on studies with cultured and fresh kidney cells, the majority of the substrate proteins for cAMP and calcium-dependent protein kinases were located in the cytoplasm with the exception of the 42,000-dalton protein which was located in the brush-border-plasma membrane fraction. The cytoplasmic cAMP-dependent protein kinase activity was responsible for the majority of PTH-stimulated protein phosphorylation.  相似文献   

2.
Incubation of quiescent chicken embryo cells with platelet-derived growth factor, epidermal growth factor, or serum was found to stimulate phosphorylation of two proteins of ca. 42,000 daltons on tyrosine. These proteins are structurally related to each other and to two proteins phosphorylated on tyrosine under similar conditions in mitogen-treated mouse fibroblasts. Three other very different mitogenic agents, the protease trypsin and the chemically unrelated tumor promoters 12-O-tetradecanoyl-phorbol-13-acetate and teleocidin, stimulated phosphorylation of the same proteins. In all cases, phosphotyrosine was detected in these phosphoproteins. Although additional changes in protein phosphorylation were evident, no other proteins were observed by two-dimensional gel electrophoresis which contained increased amounts of phosphotyrosine in mitogen-treated chicken embryo cells. One of these 42,000-dalton proteins was shown previously to be phosphorylated on tyrosine in chicken embryo cells transformed with various retroviruses whose transforming proteins possess tyrosine protein kinase activity. Phosphorylation of the 42,000-dalton proteins could be important in the regulation of cell division.  相似文献   

3.
Radioactive tracer and electrical techniques were used to study the transport of nonelectrolytes and sodium, respectively, across toad urinary bladders in the presence and absence of ADH. The permeability of lipophilic molecules was roughly proportional to bulk phase oil/water partition coefficients both in the presence and absence of hormone; i.e., ADH elicited a general nonselective increase in the permeation of all nine solutes tested. The branched nonelectrolyte, isobutyramide, was less permeable than its straight-chain isomer, n-butyramide, in control tissues. ADH reduced the discrimination between these structural isomers. Hydrophilic solutes permeated more rapidly than expected. In the presence of hormone, there was no change in the permeation of large hydrophilic solutes considered to move via an extracellular pathway, but there was a marked increase in the permeability of water and other small hydrophilic solutes. Collectively, these results suggest that ADH acts to increase the motional freedom or fluidity of lipids in the cell membrane which is considered to be the preferred pathway for the permeation of lipophilic and small hydrophilic molecules. At concentrations of cAMP and ADH which elicit equivalent increments in the shortcircuit current, the effects of these agents on nonelectrolyte transport and membrane electrical conductance are divergent. Such observations suggest that some membrane effects of ADH may not be directly dependent upon cAMP. ADH in the mucosal solution increased the permeability of the toad bladder when the surface charge on the outer surface of the apical membrane was screened with the polyvalent cation, La-3+. These experiments emphasize that interaction of ADH with membranes of toad urinary bladder may account for at least some effects of this hormone.  相似文献   

4.
Cardiac microsomes were incubated with [gamma-32P]ATP and a cardiac adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase in the presence of ethylene glycol bis(bets-aminoethyl ether)-N,N'-tetraacetic acid. After solubilization in sodium dodecyl sulfate and fractionation by polyacrylamide gel electrophoresis, a single microsomal protein component of approximately 22,000 daltons was found to bind most of the 32P label. The 32P labeling of this component increased several fold when NaF was included in the incubation medium. No other component of cardiac microsomes, including sarcoplasmic reticulum ATPase protein, contained significant amounts of 32P label. This 22,000-dalton phosphoprotein formed by cyclic AMP-dependent protein kinase had stability characteristics of a phosphoester rather than an acyl phosphate. Washing of microsomes with buffered KCl did not decrease the amount of 32P labeling to the 22,000-dalton protein, suggesting that this protein is associated with the membranes of sarcoplasmic reticulum rather than being a contaminant from other soluble proteins. The 22,000-dalton protein was susceptible to trypsin. Brief digestion with trypsin in the presence of 1 M sucrose did not significantly affect microsomal calcium transport activity, but prevented both subsequent phosphorylation of the 22,000-dalton protein and stimulation of calcium uptake by cyclic AMP-dependent protein kinase, suggesting that this protein is a modulator of the calcium pump. These results are consistent with previous findings (Kirchberger, M.A., Tada, M., and Katz, A.M. (1974) J. Biol. Chem. 249, 6166-6173; Tada, M., Kirchberger, M.A., Repke, D.I., and Katz, A.M. (1974) J. Biol. Chem. 249, 6174-6180) that cyclic AMP-dependent protein kinase-catalyzed phosphorylation is associated with stimulation of calcium transport in the cardiac sarcoplasmic reticulum, and further indicate that this phosphorylation occurs at a component of low mass (22,000 daltons) of the cardiac sarcoplasmic reticulum which, while separable from the calcium transport ATPase protein (100,000 daltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, has the ability to regulate calcium transport by the cardiac sarcoplasmic reticulum.  相似文献   

5.
Several classes of tricyclic antidepressants inhibit the action of antidiuretic hormone (ADH) and cyclic adenine monophosphate (cAMP) on osmotic water flow across toad urinary bladder without any effect on sodium transport. This finding suggests that calmodulin is involved in the hydroosmotic action of ADH (and of serosal hypertonicity), possibly in inducing exocytosis at the luminal border of vesicles rich in water channels.  相似文献   

6.
In this work we present data which show stimulation of Cl- transport in the isolated toad skin by four agonists: L-isoproterenol, L-adrenalin, angiotensin II and ADH. This response was demonstrated by raising mucosal amiloride concentration to block the sodium transport in the skin. With transepithelial sodium influx almost completely inhibited, it was likely that the response reflected transport events in the glands. Inhibition of the bioelectric parameters by removing chloride from the serosal bathing medium in the amiloride-inhibited preparation eliminated the response to all four agents, indicating that these responses are chloride dependent. The similarity of the bioelectric responses of the amiloride-treated preparation to db cAMP and to the four agents tested in this work add further evidence that this second messenger may account largely for the Cl- transport mechanism in the toad skin glands by increasing the apical membrane permeability to Cl-.  相似文献   

7.
Serotonin (5-HT) increases the phosphorylation of two low molecular weight phosphoproteins of 23,000 and 15,000 daltons molecular weight and decreases the phosphorylation of a 20,000 dalton phosphoprotein in the isolated Aplysia eye. The cAMP analog 8-benzylthio cAMP increases and decreases the phosphorylation of the 23,000 and 20,000 dalton 5-HT sensitive phosphoproteins, respectively. The effect of 5-HT on protein phosphorylation is not affected by the phase of the circadian rhythm of spontaneous compound action potentials generated in the eye.  相似文献   

8.
Active sodium transport by the isolated toad bladder   总被引:33,自引:17,他引:33       下载免费PDF全文
Studies were made of the active ion transport by the isolated urinary bladder of the European toad, Bufo bufo, and the large American toad, Bufo marinus. The urinary bladder of the toad is a thin membrane consisting of a single layer of mucosal cells supported on a small amount of connective tissue. The bladder exhibits a characteristic transmembrane potential with the serosal surface electrically positive to the mucosal surface. Active sodium transport was demonstrated by the isolated bladder under both aerobic and anaerobic conditions. Aerobically the mean net sodium flux across the bladder wall measured with radioactive isotopes, Na24 and Na22, just equalled the simultaneous short-circuit current in 42 periods each of 1 hour's duration. The electrical phenomenon exhibited by the isolated membrane was thus quantitatively accounted for solely by active transport of sodium. Anaerobically the mean net sodium flux was found to be slightly less than the short-circuit current in 21 periods of observation. The cause of this discrepancy is not known. The short-circuit current of the isolated toad bladder was regularly stimulated with pure oxytocin and vasopressin when applied to the serosal surface under aerobic and anaerobic conditions. Adrenaline failed to stimulate the short-circuit current of the toad bladder.  相似文献   

9.
Previous studies have shown that the outer membrane of Escherichia coli O111 gives a single, major, 42,000-dalton protein peak when analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis at neutral pH. Further studies have shown that this peak consists of more than a single polypeptide species, and on alkaline SDS-gel electrophoresis this single peak is resolved into three subcomponents designated as proteins 1, 2, and 3. By chromatography of solubilized, outer membrane protein on diethylaminoethyl-cellulose followed by chromatography on Sephadex G-200 in the presence of SDS, it was possible to separate the 42,000-dalton major protein into four distinct protein fractions. Comparison of cyanogen bromide peptides derived from these fractions indicated that they represented at least four distinct polypeptide species. Two of these proteins migrated as proteins 1 and 2 on alkaline gels. The other two proteins migrated as protein 3 on alkaline gels and cannot be separated by SDS-polyacrylamide gel electrophoresis. In purified form, these major proteins do not contain bound lipopolysaccharide, phospholipid, or phosphate. These proteins may contain a small amount of carbohydrate, as evidenced by the labeling of these proteins by glucosamine, and to a lesser extent by glucose, under conditions where the metabolism of these sugars to amino acids and lipids is blocked. All of the proteins were labeled to the same extent by these sugars. Thus, it was concluded that there are at least four distinct polypeptide species with apparent molecular masses of about 42,000 daltons in the outer membrane of E. coli O111.  相似文献   

10.
Monomeric cAMP-binding fragments of molecular mass 16,000 and 14,000 daltons were obtained by Sephadex G-75 chromatography of partially trypsin-hydrolyzed regulatory subunits of cAMP-dependent protein kinase isozymes I and II, respectively. The Stokes radii were 19.1 and 16.4 A, the frictional ratios were 1.15 and 1.03, and the sedimentation coefficients were 1.94 and 1.91 S for the 16,000- and 14,000-dalton fragments, respectively. The 16,000-dalton fragment retained specific cyclic nucleotide binding characteristics of the native protein. The specificity of cyclic nucleotide binding to the 14,000-dalton fragment (cAMP greater than cIMP = 8-bromo-cAMP = 8-oxo-cAMP greater than cUMP = cGMP) differed from that of the native subunit (cAMP = 8-oxo-cAMP greater than 8-bromo-cAMP greater than cIMP greater than cUMP = cGMP). The 14,000-dalton fragment bound nearly 1 mol of cAMP/mol of fragment. The binding exchange rate of cAMP was much faster for the 14,000-dalton fragment than for either of the native regulatory subunits or for the 16,000 dalton fragment. Although hemin inhibited cAMP binding to the native regulatory subunits and to the 16,000 dalton fragment, the molecule did not affect cAMP binding to the 14,000-dalton fragment. Both of the native regulatory subunits and the isolated 16,000- and 14,000-dalton fragments could be covalently labeled with the photoaffinity analog, 8-N3-[32P]cAMP. The 14,000-dalton fragment could not be phosphorylated and neither fragment could recombine with the catalytic subunit to inhibit its activity. The results indicate that the functional entities of the regulatory subunit other than cAMP binding are destroyed by trypsin. The properties of the 16,000-dalton fragment suggest that the intact cAMP-binding site is contained in a small trypsin-resistant "core" of the native regulatory subunit. The properties of the 14,000-dalton fragment imply that part of the binding site of the native regulatory subunit was slighlty modified or lost during preparation of this fragment.  相似文献   

11.
A technique for estimating effective transepithelial capacitance in vitro was used to investigate changes in epithelial cell membrane area in response to antidiuretic hormone (ADH) exposure in toad bladder. The results indicate that transepithelial capacitance increases by about 30% within 30 min after serosal ADH addition and decreases with ADH removal. This capacitance change is not blocked by amiloride and occurs whether or not there is a transepithelial osmotic gradient. It is blocked by methohexital, a drug which specifically inhibits the hydro-osmotic response of toad bladder to ADH. We conclude that the hydro-osmotic response of toad bladder to ADH is accompanied by addition of membrane to the plasmalemma of epithelial cells. This new membrane may contain channels that are permeable to water. Stimulation of Na+ transport by ADH is not related to membrane area changes, but appears to reflect activation of Na+ channels already present in the cell membrane before ADH challenge.  相似文献   

12.
Spherical 22-nm hepatitis B surface antigen (HBsAg) particles with a subtype adr were purified from plasma of asymptomatic carriers of hepatitis B virus. When purified HBsAg preparation was treated with sodium dodecylsulfate in the absence of reducing agents, it yielded spherical particles with a diameter smaller than 22 nm, and in addition, a polypeptide with a molecular size of 49,000 daltons, which seemed to constitute the outer coat of HBsAg particles. The recovery of the polypeptide on the basis of optical density at 280 nm was 2%, starting from 22-nm HBsAg particles. The 49,000-dalton polypeptide apparently represented a structural unit of the surface of HBsAg particles, since it bore all common (a, Re) and subtypic (d, r) determinants with essentially the same antigenic titers as intact HBsAg particles. Furthermore, this polypeptide was equally immunogenic as 22-nm HBsAg particles in raising corresponding antibodies in mice. When the 49,000-dalton polypeptide was reduced in the presence of 2-mercaptoethanol, it cleaved into 22,000- and 27,000-dalton polypeptides with a drastic decrease in both antigenicity and immunogenicity. These results indicate the different molecular arrangements between outer coat and inner portion of HBsAg particles, and a potential application of the 49,000-dalton polypeptide as a component vaccine, owing to its strong antigenicity both in vitro and in vivo.  相似文献   

13.
Murine splenocyte nuclei were phosphorylated with a less than 10(-5) M concentration of [gamma-32P]ATP at 0 degrees C and the phosphorylated nuclear proteins were analyzed by SDS-polyacrylamide gel slab electrophoresis and Sephadex gel filtration column chromatography. Two polypeptides of 10K and 11K daltons were predominantly phosphorylated. These polypeptides were likely linked by a disulfide bond to form a nonhistone protein of 21K daltons. Both phosphoserine and phosphothreonine were detected in the hydrolysate of the 10.5K dalton polypeptide, while phosphoserine was predominant in the 10K dalton polypeptide. Maximal activation of phosphorylation by cAMP of both polypeptides was shown at a concentration of 10(-6) M. On the contrary, cGMP activated phosphorylation of the 10K dalton polypeptide at 10(-8) M and at 10(-4) M. The phosphorylation of the 10.5K polypeptide was not activated by 10(-4) M cGMP and suppression of the phosphorylation was seen in both polypeptide chains by cAMP at higher concentrations.  相似文献   

14.
Poly(A)+ RNA was isolated from liver-free polysomes of rats maintained on a 60% casein diet by sodium dodecyl sulfate-phenol-chloroform extraction and oligo(dT)-cellulose chromatography. Poly(A)+ RNA translated in a rabbit reticulocyte lysate system produced a polypeptide of 49,000 daltons that was immunoprecipitated by monospecific, affinity-purified IgG antibodies to ornithine aminotransferase (ornithine-oxo acid aminotransferase, EC 2.6.1.13). This polypeptide is 6,000 daltons larger than mature ornithine aminotransferase when electrophoresed on sodium dodecyl sulfate polyacrylamide gels. One-dimensional peptide mapping demonstrated that this 49,000-dalton polypeptide is structurally related to ornithine aminotransferase. Furthermore, it can be processed to a polypeptide of 43,000 daltons by a rat liver mitochondrial fraction. We have concluded that this polypeptide is a precursor to ornithine aminotransferase.  相似文献   

15.
16.
Arginine vasopressin (antidiuretic hormone, ADH) stimulation of sodium transport in high electrical resistance epithelia is accompanied by adenylate cyclase stimulation and cAMP accumulation. The hypothesis of direct phosphorylation of the purified amiloride-blockable epithelial Na+ channel protein by cAMP-dependent protein kinase A after ADH treatment of cultured cells was investigated in this study. Phosphate-depleted A6 cells (a cell line derived from toad kidney) were exposed to 32PO4(3-) in the absence or presence of basolateral ADH (100 milliunits/ml). After 20 min (the time needed for ADH to increase maximally Na+ transport), the Na+ channels were extracted from the cells and purified. At every stage of purification, only one subunit of the Na+ channel, namely, the 315-kDa subunit, was specifically phosphorylated as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography or scintillation counting. In addition, a polyclonal antibody raised against purified epithelial Na+ channel protein was able to immunoprecipitate the phosphorylated channel protein from a detergent-solubilized fraction of vasopressin-treated A6 cells. This same subunit was also specifically phosphorylated in vitro when the purified Na+ channel protein was incubated with gamma-[32P]ATP and the purified catalytic subunit of the cAMP-dependent protein kinase. Thus, only a single component, the 315-kDa subunit, of the Na+ channel protein complex (which is composed of six subunits) can be phosphorylated both in vivo and in vitro. This subunit is selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 2-3 mol of 32P/mol of protein.  相似文献   

17.
Three distinct proteins, actin (42,000 daltons), the principal form of fibroblast 10 nm filament protein (55,000 daltons), and a protein with a molecular weight of 52,000 and a pI of 5.8 were detected in nonionic detergent-insoluble cytoskeletal and 10 nm filament preparations of control BHK21/C13 and line 9 hamster fibroblasts. Cytoskeletal preparations of other hamster fibroblast cell types, such as NIL8 and primary embryo fibroblasts, contained the 55,000-dalton component but lacked the 52,000-dalton protein. A Rous sarcoma virus transformant of the BHK21/C13 line and an adenovirus transformant of line 9, resembled the NIL8 and other fibroblast types in that they contained only the 55,000- and 42,000-dalton polypeptides. The identity of the 52,000-dalton protein in BHK21/C13 cells was studied. This protein co-electrophoreses on both one- and two-dimensional polyacrylamide gels with the predominant muscle form of 10 nm filament protein. Further, one-dimensional peptide maps of the hamster smooth muscle 10 nm filament protein and the hamster fibroblast 52,000-dalton protein are identical to one another and distinct from the peptide maps of both the 42,000- and the 55,000-dalton components of the fibroblast cytoskeletal preparations. We conclude that BHK21/C13 cells contain both the fibroblast and the muscle form of 10 nm filament protein.  相似文献   

18.
It has been shown that cAMP-dependent phosphorylation of a soluble sperm protein is important for the initiation of flagellar motion. The suggestion has been made that this motility initiation protein, named axokinin, is the major 56,000-dalton phosphoprotein present in both dog sperm and in other cells containing axokinin-like activity. Since the regulatory subunit of a type II cAMP-dependent protein kinase is a ubiquitous cAMP-dependent phosphoprotein of similar subunit molecular weight as reported for axokinin, we have addressed the question of how many soluble 56,000-dalton cAMP-dependent phosphoproteins are present in mammalian sperm. We report that in bovine sperm cytosol, the ratio of the type I to type II cAMP-dependent protein kinase is approximately 1:1. The type II regulatory subunit is related to the non-neural form of the enzyme and undergoes a phosphorylation-dependent electrophoretic mobility shift. The apparent subunit molecular weights of the phospho and dephospho forms are 56,000 and 54,000 daltons, respectively. When bovine sperm cytosol or detergent extracts are phosphorylated in the presence of catalytic subunits, two major proteins are phosphorylated and have subunit molecular weights of 56,000 and 40,000 daltons. If, however, the type II regulatory subunit (RII) is quantitatively removed from these extracts using either immobilized cAMP or an anti-RII monoclonal affinity column, the ability to phosphorylate the 56,000- but not 40,000-dalton polypeptide is lost. These data suggest that the major 56,000 dalton cAMP-dependent phosphoprotein present in bovine sperm is the regulatory subunit of a type II cAMP-dependent protein kinase and not the motility initiator protein, axokinin.  相似文献   

19.
Insulin exerts two types of effects on protein phosphorylation in adipocytes. First, insulin stimulates phosphorylation of a 123,000 dalton peptide (ATP citrate lyase); second, insulin inhibits the epinephrine-stimulated phosphorylation of a 69,000 dalton peptide.Propranolol, nicotinic acid and concanavalin A, agents which, like insulin, inhibit epinephrine-stimulated cAMP accumulation, also inhibit epinephrine-stimulated phosphorylation of the 69,000 dalton peptide. These agents do not, however, stimulate the phosphorylation of the 123,000 dalton peptide. Carbamylcholine and a variety of cyclic nucleotides (other than cyclic AMP and dibutyryl cAMP) do not alter protein phosphorylation in intact adipocytes. Finally, under conditions wherein insulin fails to inhibit dibutyryl cAMP-stimulated phosphorylation of the 69,000 dalton peptide, insulin-stimulated phosphorylation persists.Thus, while insulin inhibition of epinephrine-stimulated phosphorylation may be mediated by insulin-induced alterations in cAMP accumulation or action, insulin-stimulated phosphorylation is not due to alterations in cyclic nucleotide accumulation or action.  相似文献   

20.
Outer membrane protein of Escherichia coli prepared for polyacrylamide gel electrophoresis by solubilization of the membrane in an organic solvent followed by dialysis into sodium dodecyl sulfate (SDS) solution or by solublization of the membrane directly in SDS solution followed by dialysis into a SDS-urea solution and brief heating at 100 °C resulted in a simple polypeptide profile on SDS-containing gels. This polypeptide pattern was characterized by a single major protein band migrating with an apparent molecular weight of about 42,000 daltons which accounted for about 70% of the total protein on the gel. However, if the outer membrane protein is dissolved in SDS solution without urea and heated at 70 °C, major bands are observed in three regions of the gel: A broad band or group of bands near the top of the gel with an apparent molecular weight of much greater than 42,000 daltona (peak A), a second band with the same mobility as the 42,000-dalton band in boiled samples (peak B), and a third, faster-migrating band with an apparent molecular weight of less than 42,000 daltons (peak C).Elution of protein from A or C followed by heating at 100 °C converts this protein to a form migrating with peak B. If the outer-membrane protein is dissolved in SDS solution at 37 °C with no further heating and applied to gels, peak B dissappears completely and A and C increase. These can be partially converted to peak B by urea treatment. Protein from peaks A and C was isolated by chromatography on Sephadex in the presence of SDS, and the intrinsic viscosity of this protein was measured before and after boiling. The intrinsic viscosity of protein from peak A was 35 cc/g both before and after boiling, while the intrinsic viscosity of protein from peak C was 28 cc/g before boiling and 35 cc/g after boiling. These results are best explained by assuming that the protein in peak A represents aggregates of a 42,000-dalton species which are dissociated by boiling or solvent treatment and that the protein in peak C represents a monomeric form of the 42,000-dalton protein which is not fully reacted with SDS and which is converted to the “rigid rod” conformation characteristic of protein-SDS complexes only upon boiling or solvent treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号