首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
R Binet  C Wandersman 《The EMBO journal》1995,14(10):2298-2306
The Erwinia chrysanthemi metalloprotease C and the Serratia marcescens haem acquisition protein HasA are both secreted from Gram-negative bacteria by a signal peptide-independent pathway which requires a C-terminal secretion signal and a specific ABC-transporter made up of three proteins: a membrane ATPase (the ABC-protein), a second inner membrane component belonging to the membrane fusion protein family and an outer membrane polypeptide. HasA and protease C transporters are homologous although the secreted polypeptides share no sequence homology. Whereas protease C can use both translocators, HasA is secreted only by its specific transporter. Functional analysis of protease C and HasA secretion through hybrid transporters obtained by combining components from each system demonstrates that the ABC-protein is responsible for the substrate specificity and that inhibition of protease C secretion in the presence of HasA results from a defective interaction between HasA and the ABC-protein. We also show that the outer membrane protein, TolC, can combine with the membrane fusion protein HasE in the presence of either ABC-protein to form a functional transporter but not with the membrane fusion protein, PrtE. This indicates a specific interaction between the outer membrane component and the membrane fusion protein.  相似文献   

2.
The gene encoding the secreted 53-kDa metalloprotease (protease B) and the 5' end of the gene encoding the secreted 55-kDa metalloprotease (protease C) of the Gram-negative bacterium Erwinia chrysanthemi have been sequenced. The predicted sequences of the two proteases do not have typical signal sequences at their NH2 termini. Both proteases are synthesized as inactive higher molecular weight precursors (zymogens proB and proC) which are secreted into the external medium where divalent cation-mediated activation occurs. The activation of proB occurs with a t1/2 of less than 5 min at 37 degrees C in Luria broth medium, whereas that of proC occurs with a t1/2 of about 150 min. The NH2 termini of purified proteases B, proB, and C were sequenced. ProB starts at the initiator methionine whereas B and C start, respectively, at residues +16 and +18 of the sequence deduced from the nucleotide sequence. A short NH2-terminal extension is therefore removed during the activation process, most likely by an autocatalytic mechanism. Protease B shows a high degree of sequence homology with the secreted 50-kDa metalloprotease of Serratia marcescens, which also lacks a signal peptide and for which an inactive higher molecular weight form has been reported.  相似文献   

3.
We previously identified a Serratia marcescens extracellular protein, HasA, able to bind heme and required for iron acquisition from heme and hemoglobin by the bacterium. This novel type of extracellular protein does not have a signal peptide and does not show sequence similarities to other proteins. HasA secretion was reconstituted in Escherichia coli, and we show here that like many proteins lacking a signal peptide, HasA has a C-terminal targeting sequence and is secreted by a specific ATP binding cassette (ABC) transporter consisting of three proteins, one inner membrane protein with a conserved ATP binding domain, called the ABC; a second inner membrane protein; and a third, outer membrane component. Since the three S. marcescens components of the HasA transporter have not yet been identified, the reconstituted HasA secretion system is a hybrid. It consists of the two S. marcescens inner membrane-specific components, HasD and HasE, associated with an outer membrane component coming from another bacterial ABC transporter, such as the E. coli TolC protein, the outer membrane component of the hemolysin transporter, or the Erwinia chrysanthemi PrtF protein, the outer membrane component of the protease transporter. This hybrid transporter was first shown to allow the secretion of the S. marcescens metalloprotease and the E. chrysanthemi metalloproteases B and C. On account of that, the two S. marcescens components HasD and HasE were previously named PrtDSM and PrtESM, respectively. However, HasA is secreted neither by the PrtD-PrtE-PrtF transporter (the genuine E. chrysanthemi protease transporter) nor by the HlyB-HlhD-TolC transporter (the hemolysin transporter). Moreover, HasA, coexpressed in the same cell, strongly inhibits the secretion of proteases B and C by their own transporter, indicating that the E. chrysanthemi transporter recognizes HasA. Since PrtF could replace TolC in the constitution of the HasA transporter, this indicates that the secretion block does not take place at the level of the outer membrane component but rather at an earlier step of interaction between HasA and the inner membrane components.  相似文献   

4.
Secretion of the HasA hemophore is mediated by a C-terminal secretion signal as part of an ATP-binding cassette (ABC) pathway in the Gram-negative bacterium Serratia marcescens. We reconstituted the HasA secretion pathway in Escherichia coli. In E. coli, this pathway required three specific secretion functions and SecB, the general chaperone of the Sec pathway that recognizes HasA. The secretion of the isolated C-terminal secretion signal was not SecB-dependent. We have previously shown that intracellular folded HasA can no longer be secreted, and we proposed a step in the secretion process before the recognition of the secretion signal. Here we show that the secretion of a fully functional HasA variant, lacking the first 10 N-terminal amino acids, was less efficient than that of HasA and was SecB-independent. The N terminus of HasA was required, along with SecB, for the efficient secretion of the whole protein. We have also previously shown that HasA inhibits the secretion of metalloproteases from Erwinia chrysanthemi by their specific ABC transporter. Here we show that this abortive interaction between HasA and the E. chrysanthemi metalloprotease ABC transporter required both SecB and the N terminus of HasA. N-terminal fragments of HasA displayed this abortive interaction in vivo and also interacted specifically in vitro with the ABC protein of the Prt system. SecB also interacted specifically in vitro with the ABC protein of the Prt system. Finally, the HasA variant, lacking the first 10 N-terminal amino acids did not display this abortive interaction with the Prt system. We suggest that the N-terminal domain of HasA specifically recognizes the ABC protein in a SecB-dependent fashion, facilitating functional interaction with the C-terminal secretion signal leading to efficient secretion.  相似文献   

5.
A 5.5 kb DNA fragment carrying the functions necessary for the specific secretion of the extracellular metalloproteases B and C produced by the Gram-negative phytopathogenic bacterium Erwinia chrysanthemi has been sequenced. The fragment contains four transcribed and translated genes: inh, which codes for a protease inhibitor and is not required for protease secretion, and prtD, prtE and prtF, which share significant homology with the hlyB, hlyD and tolC genes required for alpha-haemolysin secretion in Escherichia coli. Mutations in any of the three prt genes abolish protease secretion. The prtD and prtE products (60 and 50 kd) contain at least one hydrophobic segment and the prtF gene product contains a signal sequence.  相似文献   

6.
The secretion pathways of the heme-binding protein HasA from Serratia marcescens and of the metalloproteases A, B, C and G from Erwinia chrysanthemi have been reconstituted in Escherichia coli. They are secreted in a single step from the cytoplasm across both membranes of the Gram-negative envelope, after recognition of their specific C-terminal secretion signal by their cognate ABC transporter. We report strong evidence that both HasA and the metalloproteases bind the SecB chaperone involved in the export of several envelope proteins via the Sec pathway. We also show that the secretion of the HasA protein is strongly dependent upon SecB in the reconstituted system, whereas that of the proteases is not. HasA secretion in the original host is strongly inhibited by a protein known to interfere with E.coli SecB function. We propose that the proteins secreted by the ABC pathway may have to be unfolded for efficient secretion.  相似文献   

7.
Erwinia chrysanthemi exports degradative enzymes by using a type I protein secretion system. The proteases secreted by this system lack an N-terminal signal peptide but contain a C-terminal secretion signal. To explore the substrate specificity of this system, we have expressed the E. chrysanthemi transporter system (prtDEF genes) in Escherichia coli and tested the ability of this ABC transporter to export hybrid proteins carrying C-terminal fragments of E. chrysanthemi protease B. The C terminus contains six glycine-rich repeated motifs, followed by two repeats of the sequences DFLV and DIIV. Two types of hybrid proteins were assayed for transport, proteins with the 93-residue-protease-B C terminus containing one glycine-rich repeat and both hydrophobic terminal repeats and proteins with the 181-residue C terminus containing all repeat motifs. Although the shorter C terminus is unable to export the hybrids, the longer C terminus can promote the secretion of hybrid proteins with N termini as large as 424 amino acids, showing that the glycine-rich motifs are required for the efficient secretion of these hybrids. However, the secretion of hybrids occurs only if these proteins do not carry disulfide bonds in their mature structures. These latter results suggest that disulfide bond formation can occur prior to or during the secretion. Disulfide bonds may prevent type I secretion of hybrids. One simple hypothesis to explain these results is that the type I channel is too narrow to permit the export of proteins with secondary structures stabilized by disulfide bonds.  相似文献   

8.
Pullulanase (PulA) from the gram-negative bacterium Klebsiella oxytoca is a 116-kDa surface-anchored lipoprotein of the isoamylase family that allows growth on branched maltodextrin polymers. PulA is specifically secreted via a type II secretion system. PelBsp-PulA, a nonacylated variant of PulA made by replacing the lipoprotein signal peptide (sp) with the signal peptide of pectate lyase PelB from Erwinia chrysanthemi, was efficiently secreted into the medium. Two 80-amino-acid regions of PulA, designated A and B, were previously shown to promote secretion of beta-lactamase (BlaM) and endoglucanase CelZ fused to the C terminus. We show that A and B fused to the PelB signal peptide can also promote secretion of BlaM and CelZ but not that of nuclease NucB or several other reporter proteins. However, the deletion of most of region A or all of region B, either individually or together, had only a minor effect on PelBsp-PulA secretion. Four independent linker insertions between amino acids 234 and 324 in PelBsp-PulA abolished secretion. This part of PulA, region C, could contain part of the PulA secretion signal or be important for its correct presentation. Deletion of region C abolished PelBsp-PulA secretion without dramatically affecting its stability. PelBsp-PulA-NucB chimeras were secreted only if the PulA-NucB fusion point was located downstream from region C. The data show that at least three regions of PulA contain information that influences its secretion, depending on their context, and that some reporter proteins might contribute to the secretion of chimeras of which they are a part.  相似文献   

9.
Erwinia chrysanthemi, a Gram-negative phythopathogenic bacterium, secretes two related extracellular metalloproteases, B and C, which do not have N-terminal signal sequences. The specific pathway by which they are secreted, which has been reconstituted in Escherichia coli, comprises three proteins -- PrtD, PrtE and PrtF. Hybrid proteins containing segments of these proteins fused to the C-terminus of protease B were purified and used to immunize rabbits. The antisera thus obtained were used to study the location and membrane topology of the three proteins. PrtD and PrtE were found to cofractionate almost exclusively with the cytoplasmic membrane, whereas PrtF was found to co-fractionate mostly with the outer membrane. Proteinase K accessibility experiments as well as sequence data lead us to propose that PrtF has one or both ends exposed to the periplasm, that PrtE has one transmembrane segment with its amino-terminus facing the cytoplasm and its C-terminal hydrophilic domain exposed to the periplasm, and that PrtD has six transmembrane segments with its N-terminus and its C-terminal hydrophilic domain in the cytoplasm.  相似文献   

10.
Erwinia chrysanthemi, a phytopathogenic bacterium, produces a protease inhibitor which is a low-molecular-weight, heat-stable protein. In addition to its action on the three E. chrysanthemi extracellular proteases A, B and C, it also strongly inhibits the 50 kD extracellular protease of Serratia marcescens. Its structural gene (inh) was subcloned and expressed in Escherichia coli, in which it encodes an active inhibitor which was purified. The nucleotide sequence of the inh gene shows an open reading frame of 114 condons. The N-terminal amino acid sequence of the purified inhibitor was also determined. It indicated the existence of an amino-terminal signal peptide absent from the mature protein. The inhibitor is entirely periplasmic in E. chrysanthemi and partially periplasmic in E. coli.  相似文献   

11.
One of the strategies used by Gram-negative bacteria to secrete proteins across the two membranes which delimit the cells, is sec independent and dedicated to proteins lacking an N-terminal signal peptide. It depends on ABC protein-mediated exporters, which consist of three cell envelope proteins, two inner membrane proteins, an ATPase (the ABC protein), a membrane fusion protein (MFP) and an outer membrane polypeptide. Erwinia chrysanthemi metalloproteases B and C and Serratia marcescens hemoprotein HasA are secreted by such homologous pathways and interact with the ABC protein. Using as protein substrates HasA and GST-PrtC, a chimeric protein which has a glutathione S-transferase moiety fused to a large C-terminal domain of protease C, we developed a simple system to identify proteins bound to the substrate based on substrate affinity-chromatography using heme- or glutathione-agarose. We show an ordered association between the protein substrates and the three exporter components: the substrate recognizes the ABC protein which interacts with the MFP which in turn binds the outer membrane component. Substrate binding is required for assembly of the three components.  相似文献   

12.
A protease with a molecular mass of 48 kDa is secreted by the fire blight pathogen Erwinia amylovora in minimal medium. We characterized this activity as a metalloprotease, since the enzyme was inhibited by EDTA and o -phenanthroline. A gene cluster was determined to encode four genes connected to protease expression, including a structural gene (prtA) and three genes (prtD, prtE, prtF) for secretion of the protease, which are transcribed in the same direction. The organization of the protease gene cluster in E. amylovora is different from that in other Gram-negative bacteria, such as Erwinia chrysanthemi, Pseudomonas aeruginosa and Serratia marcescens. On the basis of the conservative motif of metalloproteases, PrtA was identified to be a member of the metzincin subfamily of zinc-binding metalloproteases, and was confirmed to be the 48 kDa protease on gels by sequencing of tryptic peptide fragments derived from the protein. The protease is apparently secreted into the external medium through the type I secretion pathway via PrtD, PrtE and PrtF which share more than 90% identity with the secretion apparatus for lipase of S. marcescens. A protease mutant was created by Tn 5 -insertions, and the mutation localized in the prtD gene. The lack of protease reduced colonization of an E. amylovora secretion mutant labelled with the gene for the green fluorescent protein (gfp) in the parenchyma of apple leaves.  相似文献   

13.
Protease B from Erwinia chrysanthemi was shown previously to have a C-terminal secretion signal located downstream of a domain that contains six glycine-rich repeats. This domain is conserved in all known bacterial proteins secreted by the signal peptide-independent pathway. The role of these repeats in the secretion process is controversial. We compared the secretion processes of various heterologous polypeptides fused either directly to the signal or separated from it by the glycine-rich domain. Although the repeats are not involved in the secretion of small truncated protease B carboxy-terminal peptides, they are required for the secretion of higher-molecular-weight fusion proteins. Secretion efficiency was also dependent on the size of the passenger polypeptide.  相似文献   

14.
The Serratia marcescens metalloprotease (protease SM) belongs to a family of proteins secreted from gram-negative bacteria by a signal peptide-independent pathway which requires a specific transporter consisting of three proteins: two in the inner membrane and one in the outer membrane. The prtDSM and prtESM genes encoding the two S. marcescens inner membrane components were cloned and expressed in Escherichia coli. Their nucleotide sequence revealed high overall homology with the two analogous inner membrane components of the Erwinia chrysanthemi protease secretion apparatus and lower, but still significant, homology with the two analogous inner membrane components of the E. coli hemolysin transporter. When expressed in E. coli, these two proteins, PrtDSM and PrtESM, allowed the secretion of protease SM only in the presence of TolC protein, the outer membrane component of the hemolysin transporter.  相似文献   

15.
The Serratia marcescens extracellular protease SM is secreted by a signal peptide-independent pathway. When the prtSM gene was cloned and expressed in Escherichia coli, the cells did not secrete protease SM. The lack of secretion could be very efficiently complemented by the Erwinia chrysanthemi protease B secretion apparatus constituted by the PrtD, PrtE, and PrtF proteins. As with protease B and alpha-hemolysin, the secretion signal was located within the last 80 amino acids of the protease. These results indicate that the mechanism of S. marcescens protease SM secretion is analogous to the mechanisms of protease B and hemolysin secretion.  相似文献   

16.
E chrysanthemi, a phytopathogenic enterobacterium, secretes several enzymes into the medium such as pectinases cellulases and proteases. It also produces 3 distinct and antigenically related extracellular proteases. The proteases secretion pathway seems to be distinct from that of the other extracellular enzymes since pleiotropic mutants impaired in cellulase and pectinase secretion are unimpaired in protease secretion. E chrysanthemi proteases B and C secretion occurs without an N-terminal signal peptide and is dependent upon specific secretion functions which are encoded by genes adjacent to the protease structural genes. This secretion pathway might be analogous to the alpha-hemolysin secretion pathway in E coli. Protection against intracellular proteolytic activity is achieved by 2 distinct mechanisms: the proteases are synthesized as inactive precursors with an N-terminal extension of 15 aminoacids (protease B) and 17 aminoacids (protease C) absent in the mature active extracellular enzymes; an intracellular specific protease inhibitor is produced by some E chrysanthemi strains.  相似文献   

17.
Farrell PJ  Behie LA  Iatrou K 《Proteins》2000,41(1):144-153
Production of recombinant proteins that are not secreted outside the producing cells usually requires purification steps that can result in significant yield reductions and loss of biological activity. Using insect cells as a model system to devise the means for secreting recombinant proteins that are not normally destined for secretion outside the producing cells, we initially examined the ability of an insect-specific signal peptide sequence to direct secretion of two intracellular proteins (the cytoplasmic enzyme chloramphenicol acetyl transferase [CAT] and the nuclear protein Bombyx mori chorion factor 1 [BmCF1]) expressed in transfected silkmoth cells. Although this signal sequence functioned efficiently as a chimera with normally secreted proteins, it failed to secrete CAT and BmCF1, suggesting that additional signals are required for passage of these polypeptides through the secretion pathway. For this reason, we also generated a secretion module consisting of the secreted protein juvenile hormone esterase (JHE), a spacer region containing a histidine tag and an endopeptidase cleavage site, to which coding sequences of choice can be cloned as C-terminal extensions. In C-terminal fusions with the CAT and BmCF1 open reading frames, the N-terminal JHE moiety was able to provide all the signals necessary for secretion of CAT and BmCF1 into the extracellular environment. The histidine tag present in the spacer region allowed purification of fusion proteins by metal affinity chromatography under nondenaturing conditions, and the enteropeptidase cleavage site was recognized and cleaved by the cognate protease causing the release of the intracellular proteins from the secretion module. We also show that another secreted protein, human granulocyte-macrophage colony stimulating factor (GM-CSF) can substitute for JHE in the secretion module and that these secretion modules can function in mammalian cells.  相似文献   

18.
The extracellular lipase of Serratia marcescens Sr41, lacking a typical N-terminal signal sequence, is secreted via a signal peptide-independent pathway. The 20-kb SacI DNA fragment which allowed the extracellular lipase secretion was cloned from S. marcescens by selection of a phenotype conferring the extracellular lipase activity on the Escherichia coli cells. The subcloned 6.5-kb EcoRV fragment was revealed to contain three open reading frames which are composed of 588, 443, and 437 amino acid residues constituting an operon (lipBCD). Comparisons of the deduced amino acid sequences of the lipB, lipC, and lipD genes with those of the Erwinia chrysanthemi prtDEC, prtEEC, and prtFEC genes encoding the secretion apparatus of the E. chrysanthemi protease showed 55, 46, and 42% identity, respectively. The products of the lipB and lipC genes were 54 and 45% identical to the S. marcescens hasD and hasE gene products, respectively, which were secretory components for the S. marcescens heme-binding protein and metalloprotease. In the E. coli DH5 cells, all three lipBCD genes were essential for the extracellular secretion of both S. marcescens lipase and metalloprotease proteins, both of which lack an N-terminal signal sequence and are secreted via a signal-independent pathway. Although the function of the lipD gene seemed to be analogous to those of the prtFEC and tolC genes encoding third secretory components of ABC transporters, the E. coli TolC protein, which was functional for the S. marcescens Has system, could not replace LipD in the LipB-LipC-LipD transporter reconstituted in E. coli. These results indicated that these three proteins are components of the device which allows extracellular secretion of the extracellular proteins of S. marcescens and that their style is similar to that of the PrtDEF(EC) system.  相似文献   

19.
The extracellular alkaline protease produced by Pseudomonas aeruginosa is secreted by a specific pathway, independent of the pathway used by most of the other extracellular proteins of this organism. Secretion of this protease is dependent on the presence of several genes located adjacent to the apr gene. Complementation studies have shown that PrtD, E, and F, the three secretion functions for Erwinia chrysanthemi proteases B and C (Létoffé et al., 1990), can mediate the secretion of the alkaline protease by Escherichia coli. The secretion functions involved in alpha-haemolysin secretion in E. coli (hlyB, hlyD, tolC) can also be used to complement alkaline protease secretion by E. coli, although less efficiently. These data indicate that protease secretion mechanisms in Pseudomonas and Erwinia are very similar and are homologous to that of E. coli alpha-haemolysin.  相似文献   

20.
The protein glutaminase (PG) secreted by the Gram-negative bacterium Chryseobacterium proteolyticum can deamidate glutaminyl residues in several substrate proteins, including insoluble wheat glutens. This enzyme therefore has potential application in the food industry. We assessed the possibility to produce PG containing a pro-domain in Corynebacterium glutamicum which we have successfully used for production of several kinds of proteins at industrial-scale. When it was targeted to the general protein secretion pathway (Sec) via its own signal sequence, the protein glutaminase was not secreted in this strain. In contrast, we showed that pro-PG could be efficiently produced using the recently discovered twin-arginine translocation (Tat) pathway when the typical Sec-dependent signal peptide was replaced by a Tat-dependent signal sequence from various bacteria. The accumulation of pro-PG in C. glutamicum ATCC13869 reached 183 mg/l, and the pro-PG was converted to an active form as the native one by SAM-P45, a subtilisin-like serine protease derived from Streptomyces albogriseolus. The successful secretion of PG via this approach confirms that the Tat pathway of C. glutamicum is an efficient alternative for the industrial-scale production of proteins that are not efficiently secreted by other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号