首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The decrease in wet weight and noncollagen protein (NCP) was faster and greater in extensor digitorum longus (EDL) during fasting than in soleus (Sol) muscles in rats. 2. During refeeding, recovery was completed faster in Sol than in EDL. 3. Glucose uptake in skeletal muscle increased significantly during fasting on both a per wet weight and NCP basis. 4. This increase was faster and greater in EDL than Sol. 5. The initial increase in glucose uptake was greater during refeeding than fasting only in EDL.  相似文献   

2.
1. The sc injection of 1-thyroxine (2 mg/kg bw/day) for 8 days produced a significant decrease of body weight gain in young male Wistar rats. 2. In these hyperthyroid rats there was a significant decrease in the wet weight of the extensor digitorum longus (EDL) and soleus (Sol) muscles as compared with those of control rats. 3. The basal glucose uptake by the EDL and Sol muscles was unchanged in hyperthyroid rats using the wet weight of muscle as a reference. 4. In hyperthyroid rats, the insulin-stimulated uptake of glucose by both the EDL and Sol muscles was significantly decreased. This inhibition was stronger in Sol and there was no insulin stimulation of glucose uptake by Sol.  相似文献   

3.
1. Regulation of glucose uptake was compared between extensor digitorum longus (EDL) and soleus (Sol) muscles in rats. 2. Insulin stimulated glucose uptake more in EDL than in Sol. 3. Under high concentrations of insulin, the glucose uptake was higher in EDL than Sol. 4. Inhibition of oxidative phosphorylation by anoxia or an uncoupler stimulated glucose uptake more in EDL than in Sol. 5. Anoxia abolished the effect of insulin on glucose uptake in both EDL and Sol. 6. The blocker to glucose transport system reduced glucose uptake more in Sol than in EDL.  相似文献   

4.
1. 3-O-methylglucose uptake was studied after immobilization in rat extensor digitorum longus (EDL) and soleus (Sol) muscles. 2. The immobilization of the ankle was done in one of extreme positions by plaster casts. 3. In both positions, 3-O-methylglucose uptake in EDL increased and that in Sol decreased after immobilization. 4. When immobilization was released uptake returned to control level. 5. The change in uptake after immobilization and after release of immobilization was earlier in Sol.  相似文献   

5.
We hypothesized that a shift in muscle fiber type induced by clenbuterol would change monocarboxylate transporter 1 (MCT1) content and activity of lactate dehydrogenase (LDH) and isoform pattern and shift myosin heavy chain (MHC) pattern in soleus (Sol) and extensor digitorum longus (EDL) of male rats. In the clenbuterol-administered rats (2.0 mg x kg(-1) x day(-1) subcutaneously for 4 wk), the ratio of muscle weight to body weight increased in the Sol (P < 0.05) and the EDL (P < 0.01). Clenbuterol induced the appearance of fast MHC(2D) and decreased slow MHC(1) in Sol (13%) but had no effect on EDL. The MHC pattern of Sol changed from slow to fast type. Clenbuterol increased LDH-specific activity (P < 0.01) and the ratio of the muscle-type isozyme of LDH to the heart type (P < 0.05) in Sol. The LDH total activity of the EDL muscle was also increased (P < 0.05). Furthermore, MCT1 content significantly (P < 0.05) decreased in both Sol and EDL (27 and 52%, respectively). This study suggests that clenbuterol might mediate the shift of MHC from slow to fast type and the changes in the regulation of lactate metabolism. Novel to this study is the observation that clenbuterol decreases MCT1 content in the hindlimb muscles and that the decrease in MCT1 is not muscle-type specific. It may suggest that the genetic expressions of individual factors involving slow-type MHC, heart-type isozyme of LDH, and MCT1 are associated with one another but are regulated independently.  相似文献   

6.
This study was designed to investigate the effects of peripheral arterial insufficiency, exercise, and vitamin C administration on muscle performance, cross-sectional area, and ultrastructural morphology in extensor digitorum longus (EDL) and soleus (Sol) muscles in rats. Adult Wistar rats were assigned to ischemia alone (isch), ischemia-exercised (exe), ischemia-vitamin C (vit C), and ischemia-exercise-vitamin C (vit C + exe) groups. Ischemia was achieved via unilateral ligation of the right common iliac artery. Contralateral muscles within the same animal served as controls. Exercise protocol consisted of 50-min intermittent level running performed every other day for 5 days. Vitamin C (100 mg/kg body wt) was administered intraperitoneally on a daily basis throughout the 14 days of the experiment. With regard to the EDL muscle, ischemia alone reduced muscle strength, which was not recovered after vitamin C administration. Exercise alone following ischemia induced the most severe structural damage and cross-sectional area decrease in the muscle, yet the reduction in tetanic tension was not significant. Exercise in conjunction with vitamin C administration preserved ischemia-induced EDL muscle tetanic tension. In the Sol muscle, a significant reduction in single twitch tension after vitamin C administration was found, whereas the tetanic force of the ischemic Sol was not significantly decreased compared with the contralateral muscles in any group. Ischemic Sol muscle cross-sectional area was reduced in all but the exe groups. In Sol, muscle strength was reduced in the vit C group, and mean cross-sectional area of ischemic Sol muscles was reduced in all groups except the exe group. These results illustrate that mild exercise, combined with a low dose of vitamin C supplementation, may have beneficial effects on ischemic EDL muscle with a smaller effect on the Sol muscle.  相似文献   

7.
Since there are data to indicate that heavy exercise decreases insulin binding to skeletal muscle at a point when glucose uptake is known to be augmented, we tested the hypothesis that insulin-stimulated glucose uptake and metabolism are dissociated from insulin binding after exercise. Therefore, insulin binding, 2-deoxy-d-glucose (2-DOG) uptake and glucose incorporation into glycogen and glycolysis were compared in soleus and EDL muscles of intensively exercised (2-3 h) mice and non-exercised mice. Basal 2-DOG uptake was increased in the exercised EDL (P less than 0.05) but not in the exercised soleus (P greater than 0.05). However, in both muscles intense exercise increased insulin-stimulated (0.1-16 nM) 2-DOG uptake (P less than 0.05). The rates of glycogenesis were increased in both the exercised muscles (P less than 0.05) as was the rate of glycolysis in the exercise soleus (P less than 0.05). Glycolysis was not altered in the EDL (P greater than 0.05). In the face of the increased 2-DOG uptake and glucose metabolism in the exercised muscles, insulin binding was not altered in the exercised soleus muscle (P greater than 0.05) and was decreased in the exercised EDL (P less than 0.05). These results indicate that after intense exercise there is a dissociation of insulin binding from insulin action on glucose uptake and metabolism in skeletal muscles.  相似文献   

8.
The effects of training alone or in combination with long-term, non-selective, beta-adrenergic blockade on histochemical and biochemical properties of fast-twitch [extensor digitorum longus muscle (EDL)] and slow-twitch [soleus muscle (Sol)] muscle were analyzed in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto strain rats (WKY). Fiber type distribution of Sol was drastically modified in SHR with fewer type I fibers and more type IIA fibers. No such histochemical alterations were observed in EDL. While prolonged swimming training remained ineffective in inducing both histochemical and biochemical improvement in WKY, SHR displayed a significant enhancement of capillarization and oxidative capacity in both Sol and EDL. However, in long-term beta-blocks rats training failed to improve significantly the oxidative capacity of SHR muscles, suggesting that beta-adrenoreceptor stimulation is necessary for a fully efficient adaptation of muscular metabolism to physical training.  相似文献   

9.
While endurance exercise training has been shown to enhance insulin action in skeletal muscle, the effects of high resistance strength training are less clear. The purpose of this study was to determine the rate of glucose uptake in skeletal muscle in which compensatory hypertrophy was induced by synergist muscle ablation. Basal and insulin mediated [3H] 2-deoxyglucose uptake were measured in soleus and EDL muscles using the perfused rat hindquarter preparation. Neither basal nor insulin mediated glucose uptake, when expressed per gram muscle, were enhanced in hypertrophied soleus muscles compared with control muscles, despite a twofold increase in mass (P less than 0.01). In the EDL, muscle mass increased 60% with synergist ablation (P less than 0.01), however insulin mediated glucose uptake was not different from that of control muscles. The basal rate of glucose uptake in hypertrophied EDL muscles was increased twofold over that of control muscles (P less than 0.05), possibly due to changes in neural input and/or loading. These results suggest that the stimulus for development of increased muscle mass is different from that for metabolic adaptations.  相似文献   

10.
The protein phosphatase calcineurin is a signaling intermediate that induces the transformation of fast-twitch skeletal muscle fibers to a slow-twitch phenotype. This reprogramming of the skeletal muscle gene expression profile may have therapeutic applications for metabolic disease. Insulin-stimulated glucose uptake in skeletal muscle is both impaired in individuals with type II diabetes mellitus and positively correlated with the percentage of slow- versus fast-twitch muscle fibers. Using transgenic mice expressing activated calcineurin in skeletal muscle, we report that skeletal muscle reprogramming by calcineurin activation leads to improved insulin-stimulated 2-deoxyglucose uptake in extensor digitorum longus (EDL) muscles compared with wild-type mice, concomitant with increased protein expression of the insulin receptor, Akt, glucose transporter 4, and peroxisome proliferator-activated receptor-gamma co-activator 1. Transgenic mice exhibited elevated glycogen deposition, enhanced amino acid uptake, and increased fatty acid oxidation in EDL muscle. When fed a high-fat diet, transgenic mice maintained superior rates of insulin-stimulated glucose uptake in EDL muscle and were protected against diet-induced glucose intolerance. These results validate calcineurin as a target for enhancing insulin action in skeletal muscle.  相似文献   

11.
Effects of exercise on insulin binding and glucose metabolism in muscle   总被引:1,自引:0,他引:1  
To elucidate the mechanism of enhanced insulin sensitivity by muscle after exercise, we studied insulin binding, 2-deoxy-D-[1-14C]glucose (2-DOG) uptake and [5-3H]glucose utilization in glycolysis and glycogenesis in soleus and extensor digitorum longus (EDL) muscles of mice after 60 min of treadmill exercise. In the soleus, glycogenesis was increased after exercise (P less than 0.05) and remained sensitive to the action of insulin. Postexercise insulin-stimulated glycolysis was also increased in the soleus (P less than 0.05). In the EDL, glycogenesis was increased after exercise (P less than 0.05). However, this was already maximal in the absence of insulin and was not further stimulated by insulin (0.1-4 nM). The disposal of glucose occurred primarily via the glycolytic pathway (greater than 60%) in the soleus and EDL at rest and after exercise. The uptake of 2-DOG uptake was not altered in the soleus after exercise (4 h incubation at 18 degrees C). However, with 1-h incubations at 37 degrees C, a marked increase in 2-DOG uptake after exercise was observed in the soleus (P less than 0.05) in the absence (0 nM) and presence of insulin (0.2-4 nM) (P less than 0.05). A similar postexercise increase in 2-DOG uptake occurred in EDL. Despite the marked increase in glucose uptake and metabolism, no changes in insulin binding were apparent in either EDL or soleus at 37 degrees C or 18 degrees C. This study shows that the postexercise increase of glucose disposal does not appear to be directly attributable to increments in insulin binding to slow-twitch and fast-twitch muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10(SJL) mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10(SJL) mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.  相似文献   

13.
Regulation of Taurine Transport in Rat Skeletal Muscle   总被引:2,自引:1,他引:1  
Taurine concentration of soleus muscle (SL, slow-twitch) was initially about twofold higher than that of extensor digitorum longus muscle (EDL, fast-twitch). Taurine concentration in gastrocnemius muscle (GC) was intermediate between that of EDL and SL. Four days after sciatic nerve section, taurine concentration in the EDL but not in the SL was increased by 2.5-fold. The increase was not due to the muscle atrophy and was observed 28 days after denervation. Tenotomy did not increase the total taurine content of the EDL. The increase in taurine concentration of the denervated EDL was prevented by simultaneous ingestion of guanidinoethane sulfonate, a competitive inhibitor of taurine transport. The initial and the maximal rates of [3H]taurine uptake were significantly higher in SL than in EDL. Denervation dramatically accelerated the initial and the maximal rates of the transport in EDL, whereas it significantly reduced those in SL. In contrast, the electrical stimulation of sciatic nerve accelerated the uptake of taurine by EDL and SL of the control but not of the curare-treated rats. These results suggest that transport of taurine into rat skeletal muscles is regulated differently by neural information and by muscular activity, and that the regulation is dependent on the muscle phenotype.  相似文献   

14.
AMP-activated protein kinase (AMPK) is a key signaling protein in the regulation of skeletal muscle glucose uptake, but its role in mediating contraction-induced glucose transport is still debated. The effect of contraction on glucose transport is impaired in EDL muscle of transgenic mice expressing a kinase-dead, dominant negative form of the AMPKalpha(2) subunit (KD-AMPKalpha(2) mice). However, maximal force production is reduced in this muscle, raising the possibility that the defect in glucose transport was due to a secondary decrease in force production and not impaired AMPKalpha(2) activity. Generation of force-frequency curves revealed that muscle force production is matched between wild-type (WT) and KD-AMPKalpha(2) mice at frequencies < or =50 Hz. Moreover, AMPK activation is already maximal at 50 Hz in muscles of WT mice. When EDL muscles from WT mice were stimulated at a frequency of 50 Hz for 2 min (200-ms train, 1/s, 30 volts), contraction caused an approximately 3.5-fold activation of AMPKalpha(2) activity and an approximately 2-fold stimulation of glucose uptake. Conversely, whereas force production was similar in EDL of KD-AMPKalpha(2) animals, no effect of contraction was observed on AMPKalpha(2) activity, and glucose uptake stimulation was reduced by 50% (P < 0.01) As expected, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranosyl 5'-monophosphate (AICAR) caused a 2.3-fold stimulation of AMPKalpha(2) activity and a 1.7-fold increase in glucose uptake in EDL from WT mice, whereas no effect was detected in muscle from KD-AMPKalpha(2) mice. These data demonstrate that AMPK activation is essential for both AICAR and submaximal contraction-induced glucose transport in skeletal muscle but that AMPK-independent mechanisms are also involved.  相似文献   

15.
1. The binding to isolated muscle nuclei of the complex of dexamethasone with cytosol receptors from rat soleus (Sol) and extensor digitorum longus (EDL) muscles was measured. 2. The ratio of bound to total amount of complex was higher in Sol. 3. The binding of complex per mg of cytosol protein was also higher in Sol. 4. These results suggest that activation and nuclear binding of the steroid-receptor complex are not the sites of the different sensitivity of the two muscle types to glucocorticoid.  相似文献   

16.
In this study, we investigated whether the previously established differences between fast- and slow-twitch single skeletal muscle fibers of the rat, in terms of myosin heavy chain (MHC) isoform composition and contractile function, are also detectable in excitation-contraction (E-C) coupling. We compared the contractile responsiveness of electrophoretically typed, mechanically skinned single fibers from the soleus (Sol), the extensor digitorum longus (EDL), and the white region of the sternomastoid (SM) muscle to t-system depolarization-induced activation. The quantitative parameters assessed were the amplitude of the maximum depolarization-induced force response (DIFR(max); normalized to the maximum Ca(2+)-activated force in that fiber) and the number of responses elicited until the force declined by 75% of DIFR(max) (R-D(75%)). The mean DIFR(max) values for type IIB EDL and type IIB SM fibers were not statistically different, and both were greater than the mean DIFR(max) for type I Sol fibers. The mean R-D(75%) for type IIB EDL fibers was greater than that for type I Sol fibers as well as type IIB SM fibers. These data suggest that E-C coupling characteristics of mechanically skinned rat single muscle fibers are related to MHC-based fiber type and the muscle of origin.  相似文献   

17.
Muscle growth was established in specific muscles in the hindlimb of adult female rats by tenotomy of the gastrocnemius muscle. Seven days after surgery there was an increase in the wet weight of the soleus (Sol) and plantaris (P) muscles and a decrease in that of the gastrocnemius (G) muscle from the tenotomized limb compared with the respective control muscles from the contralateral limb from the same animal. In all three muscles there was a significant increase in the fractional rate of protein synthesis (ks) in the muscles from the tenotomized limb above the rate of the respective control muscles. In contrast, the extensor digitorum longus (EDL) muscle showed no change in wet weight or ks 7 days after tenotomy of G. Fasting for 12 or 36 h had no significant effect on ks in G, P, or Sol muscles from either the control or tenotomized limbs. In EDL from the control limb, both fasting periods resulted in a significant decrease in ks, although this effect was not seen in the EDL from the tenotomized limbs of the same animals. A subsequent 30-min insulin infusion was similarly ineffectual in G, P, and Sol, with its only effect evident in the EDL from the control limb, where it was sufficient to reverse the decreased ks resulting from the fasting, even though after 36 h fasting the reversal was only partial.  相似文献   

18.
Matrix metalloproteinases (MMPs) are key regulators of extracellular matrix remodeling, but have also important intracellular targets. The purpose of this study was to examine the activity and subcellular localization of the gelatinases MMP-2 and MMP-9 in skeletal muscle of control and physically trained rats. In control hind limb muscle, the activity of the gelatinases was barely detectable. In contrast, after 5 days of intense exercise, in Soleus (Sol), but not Extensor digitorum longus (EDL) muscle, significant upregulation of gelatinolytic activity in myofibers was observed mainly in the nuclei, as assessed by high resolution in situ zymography. The nuclei of quiescent satellite cells did not contain the activity. Within the myonuclei, the gelatinolytic activity colocalized with an activated RNA Polymerase II. Also in Sol, but not in EDL, there were few foci of mononuclear cells with strongly positive cytoplasm, associated with apparent necrotic myofibers. These cells were identified as activated satellite cells/myoblasts. No extracellular gelatinase activity was observed. Gel zymography combined with subcellular fractionation revealed training-related upregulation of active MMP-2 in the nuclear fraction, and increase of active MMP-9 in the cytoplasmic fraction of Sol. Using RT-PCR, selective increase in MMP-9 mRNA was observed. We conclude that training activates nuclear MMP-2, and increases expression and activity of cytoplasmic MMP-9 in Sol, but not in EDL. Our results suggest that the gelatinases are involved in muscle adaptation to training, and that MMP-2 may play a novel role in myonuclear functions.  相似文献   

19.
We investigatedthe effects of 3 wk of moderate- (21 m/min, 8% grade) andhighintensity treadmill training (31 m/min, 15% grade) on1) monocarboxylate transporter 1 (MCT-1) content in rat hindlimb muscles and the heart and2) lactate uptake in isolated soleus(Sol) muscles and perfused hearts. In the moderately trained groupMCT-1 was not increased in any of the muscles [Sol, extensor digitorum longus (EDL), and red (RG) and white gastrocnemius(WG)] (P > 0.05). Similarly,lactate uptake in Sol strips was also not increased(P > 0.05). In contrast, in theheart, MCT-1 (+36%, P < 0.05) andlactate uptake (+72%, P < 0.05)were increased with moderate training. In the highly trained group,MCT-1 (+70%, P < 0.05) and lactateuptake (+79%, P < 0.05) wereincreased in Sol. MCT-1 was also increased in RG (+94%,P < 0.05) but not in WG and EDL(P > 0.05). In the highly trainedgroup, heart MCT-1 (+44%, P < 0.05)and lactate uptake (+173%, P < 0.05) were increased. In conclusion, it has been shown that1) in both heart and skeletal musclelactate uptake is increased only when MCT-1 is increased; 2) training-induced increases inMCT-1 occurred at a lower training intensity in the heart than inskeletal muscle; 3) in the heart, lactate uptake was increased much more after high-intensity training than after moderate-intensity training, despite similar increases inheart MCT-1 with these two training intensities; and4) the increases in MCT-1 occurredindependently of any changes in the heart's oxidative capacity (asmeasured by citrate synthase activity).

  相似文献   

20.
We determined the acute effects of oxidative stress on glucose uptake and intracellular signaling in skeletal muscle by incubating muscles with reactive oxygen species (ROS). Xanthine oxidase (XO) is a superoxide-generating enzyme that increases ROS. Exposure of isolated rat extensor digitorum longus (EDL) muscles to Hx/XO (Hx/XO) for 20 min resulted in a dose-dependent increase in glucose uptake. To determine whether the mechanism leading to Hx/XO-stimulated glucose uptake is associated with the production of H2O2, EDL muscles from rats were preincubated with the H2O2 scavenger catalase or the superoxide scavenger superoxide dismutase (SOD) prior to incubation with Hx/XO. Catalase treatment, but not SOD, completely inhibited the increase in Hx/XO-stimulated 2-deoxyglucose (2-DG) uptake, suggesting that H2O2 is an intermediary leading to Hx/XO-stimulated glucose uptake with incubation. Direct H2O2 also resulted in a dose-dependent increase in 2-DG uptake in isolated EDL muscles, and the maximal increase was threefold over basal levels at a concentration of 600 micromol/l H2O2. H2O2-stimulated 2-DG uptake was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not the nitric oxide inhibitor NG-monomethyl-l-arginine. H2O2 stimulated the phosphorylation of Akt Ser473 (7-fold) and Thr308 (2-fold) in isolated EDL muscles. H2O2 at 600 micromol/l had no effect on ATP concentrations and did not increase the activities of either the alpha1 or alpha2 catalytic isoforms of AMP-activated protein kinase. These results demonstrate that acute exposure of muscle to ROS is a potent stimulator of skeletal muscle glucose uptake and that this occurs through a PI3K-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号