首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+)-induced inactivation of L-type Ca(2+) is differentially mediated by two C-terminal motifs of the alpha(1C) subunit, L (1572-1587) and K (1599-1651) implicated for calmodulin binding. We found that motif L is composed of a highly selective Ca(2+) sensor and an adjacent Ca(2+)-independent tethering site for calmodulin. The Ca(2+) sensor contributes to higher Ca(2+) sensitivity of the motif L complex with calmodulin. Since only combined mutation of both sites removes Ca(2+)-dependent current decay, the two-site modulation by Ca(2+) and calmodulin may underlie Ca(2+)-induced inactivation of the channel.  相似文献   

2.
TRPV5, a member of transient receptor potential (TRP) superfamily of ion channels, plays a crucial role in epithelial calcium transport in the kidney. This channel has a high selectivity for Ca(2+) and is tightly regulated by intracellular Ca(2+) concentrations. Recently it was shown that the molecular basis of deafness in varitint-waddler mouse is the result of hair cell death caused by the constitutive activity of transient receptor potential mucolipin 3 (TRPML3) channel carrying a helix breaking mutation, A419P, at the intracellular proximity of the fifth transmembrane domain (TM5). This mutation significantly elevates intracellular Ca(2+) concentration and causes rapid cell death. Here we show that substituting the equivalent location in TRPV5, the M490, to proline significantly modulates Ca(2+)-dependent inactivation of TRPV5. The single channel conductance, time constant of inactivation (τ) and half maximal inhibition constant (IC(50)) of TRPV5(M490P) were increased compared to TRPV5(WT). Moreover TRPV5(M490P) showed lower Ca(2+) permeability. Out of different point mutations created to characterize the importance of M490 in Ca(2+)-dependent inactivation, only TRPV5(M490P)-expressing cells showed apoptosis and extremely altered Ca(2+)-dependent inactivation. In conclusion, the TRPV5 channel is susceptible for helix breaking mutations and the proximal intracellular region of TM5 of this channel plays an important role in Ca(2+)-dependent inactivation.  相似文献   

3.
TRPV5 and TRPV6 are members of the superfamily of transient receptor potential (TRP) channels and facilitate Ca(2+) influx in a variety of epithelial cells. The activity of these Ca(2+) channels is tightly controlled by the intracellular Ca(2+) concentration in close vicinity to the channel mouth. The molecular mechanism underlying the Ca(2+)-dependent activity of TRPV5/TRPV6 is, however, still unknown. Here, the putative role of calmodulin (CaM) as the Ca(2+) sensor mediating the regulation of channel activity was investigated. Overexpression of Ca(2+)-insensitive CaM mutants (CaM(1234) and CaM(34)) significantly reduced the Ca(2+) as well as the Na(+) current of TRPV6- but not that of TRPV5-expressing HEK293 cells. By combining pull-down assays and co-immunoprecipitations, we demonstrated that CaM binds to both TRPV5 and TRPV6 in a Ca(2+)-dependent fashion. The binding of CaM to TRPV6 was localized to the transmembrane domain (TRPV6(327-577)) and consensus CaM-binding motifs located in the N (1-5-10 motif, TRPV6(88-97)) and C termini (1-8-14 motif, TRPV6(643-656)), suggesting a mechanism of regulation involving multiple interaction sites. Subsequently, chimeric TRPV6/TRPV5 proteins, in which the N and/or C termini of TRPV6 were substituted by that of TRPV5, were co-expressed with CaM(34) in HEK293 cells. Exchanging, the N and/or the C termini of TRPV6 by that of TRPV5 did not affect the CaM(34)-induced reduction of the Ca(2+) and Na(+) currents. These results suggest that CaM positively affects TRPV6 activity upon Ca(2+) binding to EF-hands 3 and 4, located in the high Ca(2+) affinity CaM C terminus, which involves the N and C termini and the transmembrane domain of TRPV6.  相似文献   

4.
Voltage-dependent Ca(2+) channels are structurally and functionally diverse. As Ca(2+) currents recorded from embryonic chick dorsal root ganglion (DRG) neurons differ significantly from their mammalian counterparts, information on the primary sequence of the chick channels will help define the structural underpinnings of Ca(2+) channel function. Here, we report the cloning and functional expression of full-length Ca(2+) channel alpha(1B) subunit cDNAs derived from chick DRGs. Two variable regions (A and B) have been identified in the cytoplasmic linker between repeats I and II; a third (C) in the carboxyl terminus extends the open reading frame by 525 nucleotides. The A and C inserts are absent, and the B insert is present in all other class B clones reported to date. The unique shorter channels appear to predominate in DRG neurons. Results represent a requisite first step in defining the structural elements that underlie variations in function and modulation of Ca(2+) channels.  相似文献   

5.
Over the past few years, it has become clear that an important mechanism by which large-conductance Ca2+-activated K+ channel (BKCa) activity is regulated is the tissue-specific expression of auxiliary β subunits. The first of these to be identified, β1, is expressed predominately in smooth muscle and causes dramatic effects, increasing the apparent affinity of the channel for Ca2+ 10-fold at 0 mV, and shifting the range of voltages over which the channel activates −80 mV at 9.1 μM Ca2+. With this study, we address the question: which aspects of BKCa gating are altered by β1 to bring about these effects: Ca2+ binding, voltage sensing, or the intrinsic energetics of channel opening? The approach we have taken is to express the β1 subunit together with the BKCa α subunit in Xenopus oocytes, and then to compare β1''s steady state effects over a wide range of Ca2+ concentrations and membrane voltages to those predicted by allosteric models whose parameters have been altered to mimic changes in the aspects of gating listed above. The results of our analysis suggest that much of β1''s steady state effects can be accounted for by a reduction in the intrinsic energy the channel must overcome to open and a decrease in its voltage sensitivity, with little change in the affinity of the channel for Ca2+ when it is either open or closed. Interestingly, however, the small changes in Ca2+ binding affinity suggested by our analysis (Kc 7.4 μM → 9.6 μM; Ko = 0.80 μM → 0.65 μM) do appear to be functionally important. We also show that β1 affects the mSlo conductance–voltage relation in the essential absence of Ca2+, shifting it +20 mV and reducing its apparent gating charge 38%, and we develop methods for distinguishing between alterations in Ca2+ binding and other aspects of BKCa channel gating that may be of general use.  相似文献   

6.
The purpose of the present work was to study the possible role of the epithelial Ca(2+) channel (ECaC) in the Ca(2+) uptake mechanism in developing zebrafish (Danio rerio). With rapid amplification of cDNA ends, full-length cDNA encoding the ECaC of zebrafish (zECaC) was cloned and sequenced. The cloned zECaC was 2,578 bp in length and encoded a protein of 709 amino acids that showed up to 73% identity with previously described vertebrate ECaCs. The zECaC was found to be expressed in all tissues examined and began to be expressed in the skin covering the yolk sac of embryos at 24 h postfertilization (hpf). zECaC-expressing cells expanded to cover the skin of the entire yolk sac after embryonic development and began to occur in the gill filaments at 96 hpf, and thereafter zECaC-expressing cells rapidly increased in both gills and yolk sac skin. Corresponding to ECaC expression profile, the Ca(2+) influx and content began to increase at 36-72 hpf. Incubating zebrafish embryos in low-Ca(2+) (0.02 mM) freshwater caused upregulation of the whole body Ca(2+) influx and zECaC expression in both gills and skin. Colocalization of zECaC mRNA and the Na(+)-K(+)-ATPase alpha-subunit (a marker for mitochondria-rich cells) indicated that only a portion of the mitochondria-rich cells expressed zECaC mRNA. These results suggest that the zECaC plays a key role in Ca(2+) absorption in developing zebrafish.  相似文献   

7.
8.
9.
Although the crucial role of Ca(2+) influx in lymphocyte activation has been well documented, little is known about the properties or expression levels of Ca(2+) channels in normal human T lymphocytes. The use of Na(+) as the permeant ion in divalent-free solution permitted Ca(2+) release-activated Ca(2+) (CRAC) channel activation, kinetic properties, and functional expression levels to be investigated with single channel resolution in resting and phytohemagglutinin (PHA)-activated human T cells. Passive Ca(2+) store depletion resulted in the opening of 41-pS CRAC channels characterized by high open probabilities, voltage-dependent block by extracellular Ca(2+) in the micromolar range, selective Ca(2+) permeation in the millimolar range, and inactivation that depended upon intracellular Mg(2+) ions. The number of CRAC channels per cell increased greatly from approximately 15 in resting T cells to approximately 140 in activated T cells. Treatment with the phorbol ester PMA also increased CRAC channel expression to approximately 60 channels per cell, whereas the immunosuppressive drug cyclosporin A (1 microM) suppressed the PHA-induced increase in functional channel expression. Capacitative Ca(2+) influx induced by thapsigargin was also significantly enhanced in activated T cells. We conclude that a surprisingly low number of CRAC channels are sufficient to mediate Ca(2+) influx in human resting T cells, and that the expression of CRAC channels increases approximately 10-fold during activation, resulting in enhanced Ca(2+) signaling.  相似文献   

10.
M K Manion  Z Su  M Villain  J E Blalock 《FASEB journal》2000,14(10):1297-1306
Calmodulin (CaM), as well as other Ca(2+) binding motifs (i.e., EF hands), have been demonstrated to be Ca(2+) sensors for several ion channel types, usually resulting in an inactivation in a negative feedback manner. This provides a novel target for the regulation of such channels. We have designed peptides that interact with EF hands of CaM in a specific and productive manner. Here we have examined whether these peptides block certain Ca(2+)-permeant channels and inhibit biological activity that is dependent on the influx of Ca(2+). We found that these peptides are able to enter the cell and directly, as well as indirectly (through CaM), block the activity of glutamate receptor channels in cultured neocortical neurons and a nonselective cation channel in Jurkat T cells that is activated by HIV-1 gp120. As a consequence, apoptosis mediated by an influx of Ca(2+) through these channels was also dose-dependently inhibited by these novel peptides. Thus, this new type of Ca(2+) channel blocker may have utility in controlling apoptosis due to HIV infection or neuronal loss due to ischemia.  相似文献   

11.
Biophysical properties of the Ca(2+)-activated nonselective cation channel expressed in brain capillaries were studied in inside-out patches from primary cultures of rat brain microvascular endothelial cells. At -40 mV membrane potential, open probability (P(o)) was activated by cytosolic [Ca(2+)] > 1 micro M and was half-maximal at approximately 20 micro M. Increasing [Ca(2+)] stimulated opening rate with little effect on closing rate. At constant [Ca(2+)], P(o) was voltage-dependent, and effective gating charge corresponded to 0.6 +/- 0.1 unitary charges. Depolarization accelerated opening and slowed closing, thereby increasing apparent affinity for Ca(2+). Within approximately 1 min of excision, P(o) declined to a lower steady state with decreased sensitivity toward activating Ca(2+) when studied at a fixed voltage, and toward activating voltage when studied at a fixed [Ca(2+)]. Deactivated channels opened approximately 5-fold slower and closed approximately 10-fold faster. The sulfhydryl-reducing agent dithiotreitol (1 mM) completely reversed acceleration of closing rate but failed to recover opening rate. Single-channel gating was complex; distributions of open and closed dwell times contained at least four and five exponential components, respectively. The longest component of the closed-time distribution was markedly sensitive to both [Ca(2+)] and voltage. We conclude that the biophysical properties of gating of this channel are remarkably similar to those of large-conductance Ca(2+)-activated K(+) channels.  相似文献   

12.
Ryanodine, a plant alkaloid, is one of the most widely used pharmacological probes for intracellular Ca(2+) signaling in a variety of muscle and non-muscle cells. Upon binding to the Ca(2+) release channel (ryanodine receptor), ryanodine causes two major changes in the channel: a reduction in single-channel conductance and a marked increase in open probability. The molecular mechanisms underlying these alterations are not well understood. In the present study, we investigated the gating behavior and Ca(2+) dependence of the wild type (wt) and a mutant cardiac ryanodine receptor (RyR2) after being modified by ryanodine. Single-channel studies revealed that the ryanodine-modified wt RyR2 channel was sensitive to inhibition by Mg(2+) and to activation by caffeine and ATP. In the presence of Mg(2+), the ryanodine-modified single wt RyR2 channel displayed a sigmoidal Ca(2+) dependence with an EC(50) value of 110 nm, whereas the ryanodine-unmodified single wt channel exhibited an EC(50) of 120 microm for Ca(2+) activation, indicating that ryanodine is able to increase the sensitivity of the wt RyR2 channel to Ca(2+) activation by approximately 1,000-fold. Furthermore, ryanodine is able to restore Ca(2+) activation and ligand response of the E3987A mutant RyR2 channel that has been shown to exhibit approximately 1,000-fold reduction in Ca(2+) sensitivity to activation. The E3987A mutation, however, affects neither [(3)H]ryanodine binding to, nor the stimulatory and inhibitory effects of ryanodine on, the RyR2 channel. These results demonstrate that ryanodine does not "lock" the RyR channel into an open state as generally believed; rather, it sensitizes dramatically the channel to activation by Ca(2+).  相似文献   

13.
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.  相似文献   

14.
The ability of membrane voltage to activate high conductance, calcium-activated (BK-type) K(+) channels is enhanced by cytosolic calcium (Ca(2+)). Activation is sensitive to a range of [Ca(2+)] that spans over four orders of magnitude. Here, we examine the activation of BK channels resulting from expression of cloned mouse Slo1 alpha subunits at [Ca(2+)] and [Mg(2+)] up to 100 mM. The half-activation voltage (V(0.5)) is steeply dependent on [Ca(2+)] in the micromolar range, but shows a tendency towards saturation over the range of 60-300 microM Ca(2+). As [Ca(2+)] is increased to millimolar levels, the V(0.5) is strongly shifted again to more negative potentials. When channels are activated by 300 microM Ca(2+), further addition of either mM Ca(2+) or mM Mg(2+) produces similar negative shifts in steady-state activation. Millimolar Mg(2+) also produces shifts of similar magnitude in the complete absence of Ca(2+). The ability of millimolar concentrations of divalent cations to shift activation is primarily correlated with a slowing of BK current deactivation. At voltages where millimolar elevations in [Ca(2+)] increase activation rates, addition of 10 mM Mg(2+) to 0 Ca(2+) produces little effect on activation time course, while markedly slowing deactivation. This suggests that Mg(2+) does not participate in Ca(2+)-dependent steps that influence current activation rate. We conclude that millimolar Mg(2+) and Ca(2+) concentrations interact with low affinity, relatively nonselective divalent cation binding sites that are distinct from higher affinity, Ca(2+)-selective binding sites that increase current activation rates. A symmetrical model with four independent higher affinity Ca(2+) binding steps, four voltage sensors, and four independent lower affinity Ca(2+)/Mg(2+) binding steps describes well the behavior of G-V curves over a range of Ca(2+) and Mg(2+). The ability of a broad range of [Ca(2+)] to produce shifts in activation of Slo1 conductance can, therefore, be accounted for by multiple types of divalent cation binding sites.  相似文献   

15.
Stretch-induced Ca(2+) release via an IP(3)-insensitive Ca(2+) channel   总被引:6,自引:0,他引:6  
Various mechanicalstimuli increase the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). A part of the increase in [Ca2+]i isdue to the release of Ca2+ from intracellular stores. Wehave investigated the effect of mechanical stimulation produced bycyclical stretch on the release of Ca2+ from theintracellular stores. Permeabilized VSMC loaded with 45Ca2+ were subjected to 7.5% average (15%maximal) cyclical stretch. This resulted in an increase in45Ca2+ rate constant by 0.126 ± 0.0035. Inhibition of inositol 1,4,5-trisphosphate (IP3),ryanodine, and nicotinic acid adenine dinucleotide phosphate channels(NAADP) with 50 µg/ml heparin, 50 µM ruthenium red, and 25 µMthio-NADP, respectively, did not block the increase in45Ca2+ efflux in response to cyclical stretch.However, 10 µM lanthanum, 10 µM gadolinium, and 10 µMcytochalasin D but not 10 µM nocodazole inhibited the increase in45Ca2+ efflux. This supports the existence of anovel stretch-sensitive intracellular Ca2+ store in VSMCthat is distinct from the IP3-, ryanodine-, and NAADP-sensitive stores.

  相似文献   

16.
Modulation of Ca(2+) stores with 10 mM caffeine stimulates robust secretion of gonadotropin (GTH-II) from goldfish gonadotropes. Although both endogenous forms of gonadotropin-releasing hormone (GnRH) utilize a common intracellular Ca(2+) store, sGnRH, but not cGnRH-II, uses an additional caffeine-sensitive mechanism. We examined caffeine signaling by using Ca(2+) imaging, electrophysiology, and cell-column perifusion. Although caffeine inhibited K+ channels, this action appeared to be unrelated to caffeine-induced GTH-II release, because the latter was insensitive to tetraethylammonium. The effects of caffeine also were not mediated by the cAMP/protein kinase A pathway. Instead, caffeine-evoked GTH-II responses were Ca(2+) signal dependent because they were abolished by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid loading. Caffeine generated localized Ca(2+) signals that began near secretory granules. Surprisingly, caffeine-stimulated GTH-II release was insensitive to 100 microM ryanodine and, unlike GnRH action, was unaffected by inhibitors of voltage-gated Ca(2+) channels or sarco(endo)plasmic reticulum Ca(2+)-ATPases. Collectively, these data indicate that caffeine-stimulated GTH-II release is not mediated by typical agonist-sensitive Ca(2+) stores found in endoplasmic reticulum.  相似文献   

17.
A Ca(2+)-blockable monovalent cation channel is present in the apical membrane of the ectoderm of the gastrulating chick embryo. We used the patch clamp technique to study several single-channel permeation properties of this channel. In symmetrical conditions without Ca2+, the Na+ current carried by the channel rectifies inwardly. The channel has an apparent dissociation constant for extracellular Na+ of 115 mM at 0 mV and a low density of negative surface charge (-0.03 e/nm2) at its extracellular entrance. The minimal pore diameter is approximately 5.8 A, as calculated from the relative permeabilities of 10 small organic cations. Extracellular application of six large organic cations decreased the inward Na+ current in a voltage-dependent manner, which strongly suggests an intrachannel block. The presence of at least two ion binding sites inside the pore is inferred from the Na+ dependence of the block by the organic cations. This hypothesis is strengthened by the fact that the extracellular Ca2+ block is also modified by the Na+ concentration. In particular, the rise of the unblocking rate with increased Na+ concentrations clearly suggests the presence of an interaction between Ca2+ and Na+ inside the channel. A low probability of double occupancy at physiological ionic conditions is implied from the absence of an anomalous mole fraction effect with mixtures of extracellular Li+ and K+. Finally, the absence of inward current at very strong hyperpolarizations and in the presence of 10 mM extracellular Ca2+ demonstrates the absence of significant Ca2+ current through this channel. It is argued that this embryonic epithelial Ca(2+)-blockable monovalent cation channel is related to both L-type Ca2+ channel and cyclic nucleotide-gated channels.  相似文献   

18.
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).  相似文献   

19.
Along with the inositol trisphosphate-induced release of stored Ca(2+), a receptor-enhanced entry of Ca(2+) is a critical component of intracellular Ca(2+) signals generated by agonists acting at receptors coupled to the activation of phospholipase C. Although the simple emptying of the intracellular Ca(2+) stores is known to be capable of activating Ca(2+) entry via the so-called "capacitative" mechanism, recent evidence suggests that Ca(2+) entry at physiological agonist concentrations, where oscillatory Ca(2+) signals are typically observed, does not conform to such a model. Instead, a noncapacitative Ca(2+) entry pathway regulated by arachidonic acid appears to be responsible for Ca(2+) entry under these conditions. Using whole-cell patch clamp techniques we demonstrate that low concentrations of arachidonic acid activate a Ca(2+)-selective current that is superficially similar to the store-operated current I(CRAC), but which also demonstrates certain distinct features. We have named this novel current I(ARC) (for arachidonate-regulated calcium current). Importantly, I(ARC) can be readily activated in cells whose Ca(2+) stores have been maximally depleted. I(ARC) represents a novel Ca(2+) entry pathway that is entirely separate from those activated by store depletion and is specifically activated at physiological levels of stimulation.  相似文献   

20.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号