首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Induction of plant defenses and their spatial variability are key subjects in the field of ecology and evolution of defensive traits in plants. Nevertheless, induction has been more commonly studied under controlled environments, ignoring other factors that might influence this process in natural settings. The main goal of this study was to determine if artificial defoliation induces trichome production in three natural populations of the tropical shrub Cnidoscolus aconitifolius. First, we performed trichome counts for each population before imposing artificial defoliation to assess differences in trichome loads between populations. Trichome densities (trichomes/cm2) were quantified for leaf blades, petioles, and flower stalks. To determine if defoliation induced trichome production, three defoliation treatments (0% leaves defoliated or controls, 50% of total leaves defoliated, and 100% defoliation) were applied once at the beginning of the reproductive season. Trichome counts were performed on each structure every ~20 d during a 3‐mo period after the application of treatments. Trichome counts showed significant differences in trichome densities between populations for all three structures. In turn, artificial defoliation increased trichome density. Significant differences among treatments were found for trichome densities on leaf blades and petioles. In both these structures, the 100 percent defoliation treatment differed significantly from control plants, presenting higher trichome densities. In addition, the treatment × population interaction was not significant for leaf blades and petioles, indicating that induction is a generalized response in this species, at least at the study sites. These results indicate that trichomes in C. aconitifolius are inducible due to defoliation.  相似文献   

2.
Lucero  D. W.  Grieu  P.  Guckert  A. 《Plant and Soil》2000,227(1-2):1-15
The combined effects of soil water deficit and above and below ground interspecific plant competition on the growth, water-use efficiency (WUE), and measured carbon isotopic composition (δ13C) values of white clover and ryegrass were studied. White clover and ryegrass were grown in specially designed crates 1) individually; 2) in shoot competition; or 3) in shoot + root competition and either well-watered or at a moderate or severe soil water deficit. The effects of shoot + root competition on shoot dry matter growth were substantial and benefited both white clover and ryegrass when well-watered or at a moderate soil water deficit, while severely reducing white clover shoot dry matter growth at severe soil water deficit. Plant competition did not affect the WUE of white clover or ryegrass. As soil water deficit increased, the WUE of white clover did not change whereas the WUE of ryegrass increased and was greater than that of white clover. This was attributed to the lower leaf water conductance of ryegrass which conserved water and maintained growth longer compared to white clover. A stronger correlation existed between soil water deficit and measured δ13C values for ryegrass at each plant competition level (P<0.001) than existed for white clover (individual: P<0.01; shoot + root: P<0.001; shoot: P<0.10). Unlike white clover, the relationship between measured δ13C values and shoot dry matter growth indicated that C assimilation for ryegrass was dependent on type of plant competition. That WUE remained constant for white clover while measured δ13C values increased as soil water deficit increased, suggests that the role below ground respiration rate played in determining δ13C values increased. The WUE of white clover appears to be independent of the nature of the competition between plants and the soil water deficit level at which it is grown, whereas for ryegrass, the addition of root competition to shoot competition should lead to increases in its WUE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Taro and cocoyam were grown outdoors in either full sun or under 40% shade. Leaves were tagged as they emerged and the effect of leaf age on net CO2 assimilation rate (A) was determined. The effects of shading on A, transpiration (E), stomatal conductance for CO2 (gc) and H2O (gs), and water use efficiency (WUE) were also determined for leaves of a single age for each species. The effect of leaf age on A was similar for both species. Net CO2 assimilation rates increased as leaf age increased up to 28 days with the exception of a sharp decline in A for 21 day-old leaves which corresponded to unusually low temperatures during the period of leaf expansion. A generally decreased as leaves aged beyond 28 days. Cocoyam had higher A rates than taro. Leaves of shade-grown plants had higher rates of A and E for both species at photosynthetic photon flux densities (PPFD) up to 1600 mol s–1 m–2. Shade-grown leaves of cocoyam had greater leaf dry weights per area (LW/A) and a trend toward higher gc and gs than sun-grown leaves. Shade leaves of taro had greater gc and g3 rates than sun-grown leaves. The data suggest that taro and cocoyam are highly adapted to moderate shade conditions.  相似文献   

4.
Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats.  相似文献   

5.
A field experiment involving two planting densities (83,333 and 166,666 plants per ha), two cropping systems (monoculture and mixed culture) and five cowpea [Vigna unguiculata L. (Walp.)] genotypes was conducted at Nietvoorbij (33°54S, 18°14E), Stellenbosch, South Africa, to select cowpea material with superior growth and water-use efficiency (WUE). The results showed significantly higher photosynthetic rates, stomatal conductance and transpiration in leaves of plants at low density and in monoculture due to greater chlorophyll (Chl) levels relative to those at high density and in mixed culture. As a result, C concentration in leaves and the amount of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B accumulated in shoots at low density and under monoculture were also much higher. Even though no marked differences in photosynthetic rates were found between and among the five cowpea genotypes, leaf C concentration and shoot C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents differed considerably, with Sanzie exhibiting the highest C concentration and C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents in shoots, followed by Bensogla and Omondaw, while ITH98-46 and TVu1509 had the lowest shoot concentration and contents of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B. WUE (calculated as photosynthate produced per unit water molecule transpired) was significantly greater in plants at low density and monoculture relative to those at high density and in mixed culture. Isotopic analysis revealed significant differences in δ13C values of sorghum [Sorghum bicolor L. (Moench.)] and cowpea, with higher δ13C values being obtained for plants at low density and in monoculture relative to those at high density or in mixed culture. The five cowpea genotypes also showed significant differences in δ13C values, with Sanzie exhibiting the most negative value (i.e. low WUE) and ITH98-46, the least negative δ13C value (i.e. high WUE). Whether measured isotopically or from gas-exchange studies, sorghum (a C4 species) exhibited much higher WUE relative to cowpea (a C3 species). Both correlation and regression analyses revealed a positive relationship between WUE from gas-exchange studies and δ13C values from isotopic analysis of cowpea and sorghum shoots.  相似文献   

6.
Thomas W. Jurik 《Oecologia》1991,87(4):539-550
Summary Plots in a naturally occurring population of giant ragweed (Ambrosia trifida L.) near Ames, Iowa, USA were left unthinned (high density,=693 plants/m2) or were thinned in early June 1989 to create low and medium densities of 10 and 50 plants/m2. Size and light environment of individual plants were measured at monthly intervals from June to September. By September, low density plants had 15 times greater biomass/plant and 30 times greater leaf area/plant than high density plants, although biomass and leaf area per unit land area decreased with decreasing density. Plants at high density allocated more biomass to stem growth, but plants at medium and low density had successively higher leaf area ratios, higher potential photosynthetic rates, higher allocation to leaves, and higher growth rates. Average light on leaves decreased with increasing density and also decreased over the growing season in the low and medium densities. The distribution of light environments of individual plants was non-normal and skewed to the left in most months, in contrast to the rightwards skew of distributions of plant size parameters. Inequality in the distributions, as measured by coefficient of variation and Gini coefficients, increased over most of the growing season. There was little effect of density on inequality of stem diameter, height, or estimated dry weight, but inequality in reproductive output greatly increased with density. There was greater inequality in number of staminate flowers produced than in number of pistillate flowers and seeds produced. Path analysis indicated that early plant size was the most important predictor of final plant size and reproductive output; photosynthesis, conductance, and light environment were also significantly correlated with size and reproduction but usually were of minor importance. Variation in growth rate apparently increased inequality in plant size at low density, whereas belowground competition and death of smaller plants may have limited increases in inequality at high density.  相似文献   

7.
Cherry (Prunus avium L.) saplings were grown under natural sunlight (controls) or moderate shading (up to 30%, depending on the incident light intensity and the hour of the day). Reduced light intensity increased the dry mass of each of the plant components studied. Consequently, the total dry mass of shaded plants was significantly greater than that of controls at the end of the growing season. However, the diurnal trend in the level of photosynthesis (per unit of leaf area) of shaded plants was similar to the controls in August, but lower in September. As the growing season proceeded, reduced photosynthetic rates, thinner mesophyll and larger specific leaf area in the shaded plants indicated that leaf development had adapted to shaded conditions throughout the growing season. It is suggested that increased growth of shaded plants was caused by a higher initial relative growth rate and a greater whole-plant photosynthesis. Shading consistently reduced transpiration over the season, therefore improving water use efficiency of shaded leaves. Our results suggest that a moderate reduction in light intensity can be a useful method for improving growth and saving water in hot and dry environments.  相似文献   

8.
Dwarf mangroves on peat substrate growing in eastern Puerto Rico (Los Machos, Ceiba State Forest) were analyzed for element concentration, leaf sap osmolality, and isotopic signatures of C and N in leaves and substrate. Mangrove communities behind the fringe presented poor structural development with maximum height below 1.5 m, lacked a main stem, and produced horizontal stems from which rhizophores developed. This growth form departs from other dwarf mangrove sites in Belize, Panama, and Florida. The dwarf mangroves were not stressed by salinity but by the low P availability reflected in low P concentrations in adult and senescent leaves. Low P availability was associated with reduced remobilization of N and accumulation of K in senescent leaves, contrasting with the behavior of this cation in terrestrial plants. Remobilization of N and P before leaf abscission on a weight basis indicated complete resorption of these nutrients. On an area basis, resorption was complete for P but not for N. Sulfur accumulated markedly with leaf age, reaching values up to 400%, compared with relatively modest accumulation of Na (40%) in the same leaves. This suggests a more effective rejection of Na than sulfate at the root level. Dwarf mangrove leaves had more positive δ13C values, which were not related to salinity, but possibly to drought during the dry season due to reduced flooding, and/or reduced hydraulic conductance under P limitation. Negative leaf δ15N values were associated with low leaf P concentrations. Comparison with other R. mangle communities showed that P concentration in adult leaves below 13 mmol kg−1 is associated with negative δ15N values, whereas leaves with P concentrations above 30 mmol kg−1 in non-polluted environments had positive δ15N values.  相似文献   

9.
Summary The prairie compass plant (Silphium laciniatum L.) has vertical leaves that are characteristically oriented in a north-south plane (i.e., the flat surfaces of the lamina face east and west). We explored the consequences of this orientation by determining basic photosynthetic and water use characteristics in response to environmental factors and by determining total daily photosynthesis and water use of leaves held in different orientations. Average maximum CO2 exchange rate (CER) of leaves near Ames, IA was constant at 22 micromol m–2 s–1 from May through August and then declined. CER did not exhibit a distinct lightsaturation point. CER at photon flux densities near full sunlight was constant from 22 to 35°C leaf temperature but declined at higher temperatures. However, leaf temperatures rarely exceed 35°C during the growing season. There was no change in the pattern of response of CER to temperature over the growing season. We constrained leaves to face east-west (EW,=natural), to face north-south (NS), or to be horizontal (HOR) on eight days in 1986–1988. EW leaves had the highest light interception, leaf temperatures, CER, and transpiration early and late in the day, whereas HOR leaves had the highest values in the middle of the day. Integrations of CER and transpiration over the eight daytime periods showed EW and HOR leaves to have equivalent carbon gain, higher than that of NS leaves. HOR leaves had the highest daily transpiration. Daily water use efficiency (WUE, carbon gained/water lost) was always highest in EW leaves, with the HOR leaves having 16% lower WUE and NS leaves having 33% lower WUE. The natural orientation of compass plant leaves results in equivalent or higher carbon gain and in increased WUE when compared to leaves with other possible orientations; this is likely to have a selective advantage in a prairie environment.  相似文献   

10.
Abstract 1 Willows are frequently attacked and defoliated by adult leaf beetles (Phratora vulgatissima L.) early in the season and the plants are then attacked again when new larvae emerge. The native willow Salix cinerea has previously been shown to respond to adult grazing by producing new leaves with an increased trichome density. Subsequent larval feeding was reduced on new leaves. This type of induced plant response may reduce insect damage and could potentially be utilized for plant protection in agricultural systems. 2 Here, we investigated if the willow species most commonly used for biomass production in short rotation coppice, Salix viminalis, also responds to adult beetle grazing by increasing trichome density. Larval performance and feeding behaviour on plants previously exposed to adult beetles was compared with that on undefoliated control plants in a greenhouse. 3 We found an overall decrease in trichome density within all the plants (i.e. trichome density was lower on new leaves compared to that for older basal leaves on S. viminalis). However, leaves of beetle defoliated plants had a higher trichome density compared to control plants. Larval growth and feeding was not affected by this difference between treatments. Larvae appeared to remove trichomes when feeding on S. viminalis, a behaviour that might explain the lack of difference between treatments.  相似文献   

11.
Adams HD  Kolb TE 《Oecologia》2004,140(2):217-225
We sought to understand differences in tree response to meteorological drought among species and soil types at two ecotone forests in northern Arizona, the pinyon-juniper woodland/ponderosa pine ecotone, and the higher elevation, wetter, ponderosa pine/mixed conifer ecotone. We used two approaches that provide different information about drought response: the ratio of standardized radial growth in wet years to dry years (W:D) for the period between years 1950 and 2000 as a measure of growth response to drought, and 13C in leaves formed in non-drought (2001) and drought (2002) years as a measure of change in water use efficiency (WUE) in response to drought. W:D and leaf 13C response to drought for Pinus edulis and P. ponderosa did not differ for trees growing on coarse-texture soils derived from cinders compared with finer textured soils derived from flow basalts or sedimentary rocks. P. ponderosa growing near its low elevation range limit at the pinyon-juniper woodland/ponderosa pine ecotone had a greater growth response to drought (higher W:D) and a larger increase in WUE in response to drought than co-occurring P. edulis growing near its high elevation range limit. P. flexilis and Pseudotsuga menziesii growing near their low elevation range limit at the ponderosa pine/mixed conifer ecotone had a larger growth response to drought than co-occurring P. ponderosa growing near its high elevation range limit. Increases in WUE in response to drought were similar for all species at the ponderosa pine/mixed conifer ecotone. Low elevation populations of P. ponderosa had greater growth response to drought than high-elevation populations, whereas populations had a similar increase in WUE in response to drought. Our findings of different responses to drought among co-occurring tree species and between low- and high-elevation populations are interpreted in the context of drought impacts on montane coniferous forests of the southwestern USA.  相似文献   

12.
田间不同水肥管理下小粒咖啡的生长和光合特性   总被引:7,自引:0,他引:7  
通过云南5年生田间小粒咖啡(Coffea arabica)进行2种施肥(低肥和高肥)和在干季秸秆覆盖、滴灌、秸秆覆盖+滴灌、对照4种水分处理对植株生长和叶片光合特性影响的测定研究.结果表明,小粒咖啡一年生长周期中最高峰期在雨季始期,次高峰期在雨季中期.水分处理对生长高峰期株高和分枝长度的相对生长率没有显著作用,高施肥量则加大了其相对生长率.干季水分处理提高了叶片的Pn、gs、Tr和WUE,而叶绿素的荧光特征没有受到影响.在湿季,高施肥量使叶片含氮量Pn增加,对gs和Tr的影响较小,从而导致WUE提高,高施肥量显著减小日间光抑制程度,加大了光合机构的实际光化学效率和热耗散能力,提高了对强光环境的适应性,研究表明,小粒咖啡需要高养分的投入和良好的水分管理,湿季是小粒咖啡进行光合和生长的最优季节,干季田间秸秆覆盖+滴灌的效果较好,滴灌和秸秆覆盖的效果相近。  相似文献   

13.
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (A mass), nitrogen concentration (N mass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (A area), phosphorus concentration per unit mass (P mass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A area decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A mass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.  相似文献   

14.
Water use patterns of two species of strangler fig, Ficus pertusa and F. trigonata, growing in a Venezuelan palm savanna were contrasted in terms of growth phase (epiphyte and tree) and season (dry and wet). The study was motivated by the question of how C3 hemiepiphytes accommodate the marked change in rooting environment associated with a life history of epiphytic establishment followed by substantial root development in the soil. During the dry season, stomatal opening in epiphytic plants occurred only during the early morning, maximum stomatal conductances were 5 to 10-fold lower, and midday leaf water potentials were 0.5–0.8 MPa higher (less negative) than in conspecific trees. Watering epiphytes of F. pertusa during the dry season led to stomatal conductances comparable to those exhibited by conspecific trees, but midday leaf water potentials were unchanged. During the rainy season, epiphytes had lower stomatal conductances than conspecific trees, but leaf water potentials were similar between the two growth phases. There were no differences in 13C between the two growth phases for leaves produced in either season. Substrate water availability differed between growth phases; tree roots extended down to the permanent water table, while roots of epiphytic plants were restricted to material accumulated behind the persistent leaf bases of their host palm tree, Copernicia tectorum. Epiphytic substrate moisture contents were variable during both seasons, indicating both the availability of some moisture during the dry season and the possibility of intermittent depletion during the rainy season. Epiphytic strangler figs appear to rely on a combination of strong stomatal control, maintenance of high leaf water potentials, and perhaps some degree of stem water storage to cope with the fluctuating water regime of the epiphytic environment.  相似文献   

15.
不同模拟增雨下白刺比叶面积和叶干物质含量的比较   总被引:3,自引:0,他引:3  
任昱  卢琦  吴波  刘明虎 《生态学报》2015,35(14):4707-4715
以荒漠生态系统典型植物白刺(Nitraria tangutorum)为研究对象,根据内蒙古磴口多年平均降水量和植物生长规律,设计两个增雨时段(生长季前期与生长季后期),每个增雨时段设置两个增雨梯度(72.5mm/a(50%)、145mm/a(100%)),对天然白刺灌丛进行增雨实验,研究了不同模拟增雨处理下2012年与2013年生长季白刺叶片的比叶面积(SLA)与叶干物质含量(LDMC)的变化。结果表明,增雨处理可以增加白刺叶片的SLA及LDMC,同时期增雨100%处理对SLA及LDMC的影响大于50%处理,但同时期增雨的两个处理之间无显著差异;白刺叶片SLA在生长季前期对水分响应明显,LDMC则在生长季后期对水分反应敏感;相同增雨处理,2012年白刺叶片SLA及LDMC的净增加值高于2013年;SLA与LDMC在2012年呈显著负相关,在2013年虽呈负相关,但相关性不显著。在未来降雨增加的背景下,荒漠植物白刺叶片SLA与LDMC对增雨具有较强的协调适应能力,在不同生长季节可以通过改变不同的叶片性状来适应环境变化。  相似文献   

16.
The efficiency of water use to produce biomass is a key trait in designing sustainable bioenergy‐devoted systems. We characterized variations in the carbon isotope composition (δ13C) of leaves, current year wood and holocellulose (as proxies for water use efficiency, WUE) among six poplar genotypes in a short‐rotation plantation. Values of δ13Cwood and δ13Cholocellulose were tightly and positively correlated, but the offset varied significantly among genotypes (0.79–1.01‰). Leaf phenology was strongly correlated with δ13C, and genotypes with a longer growing season showed a higher WUE. In contrast, traits related to growth and carbon uptake were poorly linked to δ13C. Trees growing on former pasture with higher N‐availability displayed higher δ13C as compared with trees growing on former cropland. The positive relationships between δ13Cleaf and leaf N suggested that spatial variations in WUE over the plantation were mainly driven by an N‐related effect on photosynthetic capacities. The very coherent genotype ranking obtained with δ13C in the different tree compartments has some practical outreach. Because WUE remains largely uncoupled from growth in poplar plantations, there is potential to identify genotypes with satisfactory growth and higher WUE.  相似文献   

17.
多穗柯是一种珍贵天然野生药用植物,可以开发出保健食品色素和天然医用药品,广西的资源较丰富,该研究采集巴马、那坡、德保及田林等4个产地的多穗柯种子进行播种育苗,并跟踪调查测定一年生幼苗的叶片性状及幼苗生长量,并进行相关性分析。结果表明:(1)不同产地间叶片性状及幼苗生长指标均存在不同程度的差异,其中巴马与那坡、德保、田林在叶长、叶宽、叶面积、叶脉间距、叶鲜重、叶片干物质含量、叶片组织密度等叶片性状上的差异均达到显著水平,在株高、地径、单株干重、主根长、单株根干重及单株叶干重等生长指标上亦存在显著差异,且生长量是后3个产地的1~2倍;通过比较各产地的叶片保水力及植株净生长量,巴马的多穗柯植株耐旱性及生长速度优于其他三地。综合各性状表现,认为巴马的多穗柯苗期表现比较好,生长速度快,长势好,抗旱性较强,可作为多穗柯优良种源的初步选择。(2)8月份是多穗柯株高、地径的生长高峰期,建议此时应加强肥水管理,调节适宜的水肥光热条件,尽量延长幼苗的快速生长时间,以获得苗木的最大累积生长量。(3)叶片性状与幼苗生长量的相关性分析结果显示,叶面积与株高、地径、单株干重、单株根干重以及单株叶干重等呈极显著正相关,叶脉间距、叶绿素相对含量(SPAD)与株高、单株干重呈显著或极显著正相关,比叶面积与株高、地径呈显著负相关。因此,在以后的优株表型选择中,要优先考虑叶子大、叶脉间距宽、中老熟叶片叶色浓绿的植株。该研究结果为多穗柯优良种质资源的早期筛选提供了一定的依据。  相似文献   

18.
Effects of Abscisic Acid on Growth of Wheat (Triticum aestivum L)   总被引:1,自引:0,他引:1  
HALL  H. K.; MCWHA  J. A. 《Annals of botany》1981,47(4):427-433
Daily application of abscisic acid (ABA) to growing wheat plants,although initially inhibiting growth, resulted, after a shortlag, in an increase in the number of leaves and tillers. Thismay have been due to reduced apical dominance. At 84 days thetotal dry weight and area of all leaves produced up to thistime was less for the plants treated with ABA than for the controlplants. However, the area of green, living leaves and the dryweight were not significantly affected by the ABA treatment.Further effects of the daily ABA treatment were the inhibitionof transpiration, especially on the abaxial surface, the reductionof leaf size, the promotion of flowering and the stimulationof trichome formation on the leaf surfaces. ABA did not promoteleaf senescence in whole plants and actually increased leaflongevity. Triticum aestivum L., wheat, leaf senescence, transpiration, growth, flowering, abscisic acid  相似文献   

19.
Leaf traits have long been recognized as influential factors in the acquisition and processing of resources by plants. However, there is less knowledge of between-species variations in seasonal changes in leaf traits and trait interrelationships. Therefore, we examined variations in leaf area (LA), dry biomass (DM), specific leaf area (SLA), and leaf gas-exchange parameters in one non-native and seven native tree species under field environmental conditions, in a karst area in China subjected to desertification. Measurements were taken three times during the growing season. The results show that the seven native trees had higher LA, DM, and water-use efficiency (WUE) than the non-native Cinnamomum camphora. In contrast, all the native tree species except Ligustrum lucidum had lower photosynthetic rates (P N) than the non-native species. In all species, the relationship between LA and DM was less variable than the relationship between SLA and LA. However, leaves of the non-native C. camphora and native species Sterculia lanceolata, Cleidiocarpon cavalerei and Cyclobalanopsis glauca were highly sensitive to seasonal conditions, leaves of Sapindus mukorossi and Ligustrum lucidum were less sensitive to seasonal changes, and leaves of Syzygium cumini and Cephalomappa sinensis were insensitive. An understanding of leaf traits will aid the selection of suitable species for land restoration.  相似文献   

20.
The gas exchange properties of whole plant canopies are an integral part of crop productivity and have attracted much attention in recent years. However, insufficient information exists on the coordination of transpiration and CO2 uptake for individual leaves during the growing season. Single-leaf determinations of net photosynthesis (Pn), transpiration (E) and water use efficiency (WUE) for field-grown cotton (Gossypium hirsutum L.) leaves were recorded during a 2-year field study. Measurements were made at 3 to 4 day intervals on the main-stem and first three sympodial leaves at main-stem node 10 from their unfolding through senescence. Results indicated that all gas exchange parameters changed with individual main-stem and sympodial leaf age. Values of Pn, E and WUE followed a rise and fall pattern with maximum rates achieved at a leaf age of 18 to 20 days. While no significant position effects were observed for Pn, main-stem and sympodial leaves did differ in E and WUE particularly as leaves aged beyond 40 days. For a given leaf age, the main-stem leaf had a significantly lower WUE than the three sympodial leaves. WUE's for the main-stem and three sympodial leaves between the ages of 41 to 50 days were 0.85, 1.30, 1.36 and 1.95 μmol CO2 mmol−1 H2O, respectively. The mechanisms which mediated leaf positional differences for WUE were not strictly related to changes in stomatal conductance (gs·H2O) since decreases in gs·H2O with leaf age were similar for the four leaves. However, significantly different radiant environments with distance along the fruiting branch did indicate the possible involvement of mutual leaf shading in determining WUE. The significance of these findings are presented in relation to light competition within the plant canopy during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号