首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different DNA-based techniques, Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR) and Amplified Fragment Length Polymorphism (AFLP) markers, were used for fingerprinting Dactylis glomerata genotypes and for detecting genetic variation between the three different subspecies. In this study, RAPD assays produced 97 bands, of which 40 were polymorphic (41.2%). The ISSR primers amplified 91 bands, and 54 showed polymorphism (59.3%). Finally, the AFLP showed 100 bands, of which 92 were polymorphic (92%). The fragments were scored as present (1) or absent (0), and those readings were entered in a computer file as a binary matrix (one for each marker). Three cluster analyses were performed to express–in the form of dendrograms–the relationships among the genotypes and the genetic variability detected. All DNA-based techniques used were able to amplify all of the genotypes. There were highly significant correlation coefficients between cophenetic matrices based on the genetic distance for the RAPD, ISSR, AFLP, and combined RAPD-ISSR-AFLP data (0.68, 0.78, 0.70, and 0.70, respectively). Two hypotheses were formulated to explain these results; both of them are in agreement with the results obtained using these three types of molecular markers. We conclude that when we study genotypes close related, the analysis of variability could require more than one DNA-based technique; in fact, the genetic variation present in different sources could interfere or combine with the more or less polymorphic ability, as our results showed for RAPD, ISSR and AFLP markers. Our results indicate that AFLP seemed to be the best-suited molecular assay for fingerprinting and assessing genetic relationship among genotypes of Dactylis glomerata.  相似文献   

2.
Two different DNA-based techniques, random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers, were used for fingerprinting kiwifruit genotypes and for detecting undesirable genetic variation in micropropagated plants. The fragments were scored as present (1) or absent (0), and those readings were entered in a computer file as a binary matrix (one for each marker). Two cluster analyses were performed to express - in the form of dendrograms - the relationships among the genotypes and the genetic variability detected. Both DNA-based techniques were able to amplify all of the genotypes, but only SSR markers could detect genetic variation induced in micropropagated plants of cv. Tomuri. Two hypotheses were formulated to explain these results, both of them are in agreement with the results obtained using these two types of molecular markers. We conclude that when the tissue culture technique is used, the analysis of somaclonal variability could require more than one DNA-based technique; in fact, the genetic variation present in different sources could interfere or combine with the more or less polymorphic ability, as our results showed for SSR and RAPD markers.  相似文献   

3.
PCR-based random amplified polymorphic DNA (RAPD) markers were employed to assess genetic diversity in 23 chickpea genotypes. Forty of the 100 random primers screened revealed polymorphism among the genotypes. Most of the primers revealed single polymorphic band, and only 14.1 2% of the products were polymorphic. Estimates of genetic similarity based on Jaccard’s coefficient ranged from 0.92 to 0.99, indicating narrow genetic variability among the genotypes based on RAPD markers.The 23 chickpea genotypes formed two major clusters in the dendrogram.The low RAPD polymorphism among chickpea genotypes suggests that more number of polymorphic primers need to be analysed to determine genetic relationships. It was observed that RAPD analysis employing 30 polymorphic primers could provide better estimates of genetic relationships in chickpea.  相似文献   

4.
Summary The RAPD procedure was used to establish genetic diversity of 28 potato genotypes including siblings and genotypes with no immediate relationship. In addition amplified DNA from three parents and Solanum chacoense were compared with that from six progeny to determine the genetic relationships. Amplification of genomic DNA from the 28 genotypes using PCR and 12 decamer primers yielded 158 amplified DNA fragments, ranging in size from 490 to 3200 bp. A total of 128 unique RAPD fragments were observed among the 28 potato genotypes. Similarity measures and principal coordinate analysis generally reflected the expected trends in relationships of the full and half-sib potato genotypes. However there were important exceptions to this general trend and it appears that related varieties can be as genetically different as varieties with no immediate relationship. The data suggest that RAPD analysis used in conjunction with pedigree information can provide a superior measure of genetic divergence than analysis based solely on pedigree information.Abbreviations PCR polymerase chain reaction - RAPD random amplified polymorphic DNA - DNA deoxyribonucleic acid - CTAB cetyltrimethylammonium bromide - RNA ribonucleic acid - PCO principal coordinate analysis  相似文献   

5.
The RAPD (random amplified polymorphic DNA) fingerprinting method, which utilizes low stringency PCR amplification with single primers of arbitrary sequence to generate strain-specific arrays of anonymous DNA fragments, was calibrated relative to the widely used, protein-based multilocus enzyme electrophoretic (MLEE) typing method. RAPD fingerprinting was carried out on five isolates from each of 15 major groups of Escherichia coli strains that cause diarrheal disease worldwide (75 isolates in all). Each group consisted of isolates that were not distinguishable from one another by MLEE typing using 20 diagnostic enzyme markers. In our RAPD tests, three or more distinct subgroups in each MLEE group were distinguished with each of five primers, and 74 of the 75 isolates were distinguished when data obtained with five primers were combined. Thus, RAPD typing is far more sensitive than MLEE typing for discriminating among related strains of a species. Despite their different sensitivities, the same general relationships among strains were inferred from MLEE and RAPD data. Thus, our results recommend use of the RAPD method for studies of bacterial population genetic structure and evolution, as well as for epidemiology.  相似文献   

6.
Thirty two pathogenic isolates of Fusarium udum from different pigeonpea growing areas in India were studied for pathogenic and molecular variability. Pathogenic variability was tested on 12 pigeonpea differential genotypes, which revealed prevalence of five variants in F. udum. The amount of genetic variation was evaluated by Polymerase Chain Reaction (PCR) amplification with 20 random amplified polymorphic DNA (RAPD) markers and nine microsatellite markers. All amplifications revealed scorable polymorphisms among the isolates, and a total of 137 polymorphic fragments were scored for the RAPD markers and 16 alleles for the simple sequence repeat (SSR) markers. RAPD primers showed 86% polymorphism. Genetic similarity was calculated using Jaccard's similarity coefficient and cluster analysis was used to generate a dendrogram showing relationships between them. Isolates could be grouped into three subpopulations based on molecular analysis. Results indicated that there is high genetic variability among a subpopulation of F. udum as identified by RAPD and SSR markers and pathogenicity on differential genotypes.  相似文献   

7.
Aims:  To investigate the genetic relatedness between Lactococcus garvieae strains isolated from fish and dairy samples collected in northern Italy, using random-amplified polymorphic DNA (RAPD)-polymerase chain reaction (PCR), Sau -PCR and amplified fragment length polymorphism (AFLP).
Methods and Results:  Eighty-one isolates from bovine and caprine dairy products ( n  = 53) and from diseased rainbow trouts and other fishes ( n  = 28) were examined. All methods showed a typeability of 100%, repeatability ranging from 84·4% to 97·5% and discriminatory powers from 0·798 to 0·986. Dairy and fish strains revealed a low genetic relatedness as they are often grouped into distinct clusters. RAPD analysis discriminated 52 genotypes when primer M13 was used, whereas with primer P5 only 27 genotypes were identified. When Sau -PCR was performed, 13 genotypes were detected while AFLP analysis allowed the differentiation of 32 genotypes.
Conclusion:  L. garvieae strains isolated from dairy samples are generally not related to those collected from fish lactococcosis outbreaks.
Significance and Impact of the Study:  L. garvieae strains exhibit a genetic diversity related to the specific animal host they colonize. RAPD M13 fingerprinting proved to be a molecular tool for comparing isolates, whereas Sau -PCR and AFLP analyses were useful techniques to investigate the distribution of L. garvieae populations in the environment.  相似文献   

8.
The optimisation of polymerase chain reaction (PCR) for random amplified polymorphic DNA (RAPD) analysis in pea was investigated and the results were applied to an analysis of five representative Australian varieties and five selected boron-tolerant accessions derived from different geographical regions. Genotypes were compared using 34 random primers (Operon Technologies, Alameda, CA) which generated 180 polymorphic bands. Genetic similarity among genotypes was estimated on the basis of the percentage of common bands between genotypes and a dendrogram was constructed by the unweighted pair grouping method. A pattern of RAPD reaction corresponding to two main groups was discerned. The genetic divergence between Australian varieties and the boron-tolerant accessions suggests an intensive back-crossing programme would be required to transfer boron tolerance to a locally adapted genetic background. Our results show RAPD to be useful for clarifying phylogenic relationships within a species and also to provide useful genetic markers for varietal identification in pea.  相似文献   

9.
Ten snap bean (Phaseolus vulgaris) genotypes were screened for polymorphism with 400 RAPD (random amplified polymorphic DNA) primers. Polymorphic RAPDs were scored and classified into three categories based on ethidium bromide staining intensity. An average of 5.19 RAPD bands were scored per primer for the 364 primers that gave scorable amplification products. An average of 2.15 polymorphic RAPDs were detected per primer. The results show that primer screening may reduce the number of RAPD reactions required for the analysis of genetic relationships among snap-bean genotypes by over 60%. Based on the analysis of the distribution of RAPD amplification, the same number of polymorphic RAPDs were amplified from different genotypes for all RAPD band intensity levels. A comparison of RAPD band amplification frequency among genotypes for the three categories of bands classified by amplification strength revealed a measurable difference in the frequencies of RAPDs classified as faint (weakly amplifying) compared to RAPD bands classified as bold (strongly amplifying) indicating a possible scoring error due to the underscoring of faint bands. Correlation analysis showed that RAPD bands amplified by the same primer are not more closely correlated then RAPD bands amplified by different primers but are more highly correlated then expected by chance. Pairwise comparisons of RAPD bands indicate that the distribution of RAPD amplification among genotypes will be a useful criterion for establishing RAPD band identity. For the average pairwise comparison of genotypes, 50% of primers tested and 15.8% of all scored RAPDs detected polymorphism. Based on RAPD data Nei's average gene diversity at a locus was 0.158 based on all scorable RAPD bands and 0.388 if only polymorphic RAPD loci were considered. RAPD-derived 1 relationships among genotypes are reported for the ten genotypes included in this study. The data presented here demonstrate that many informative, polymorphic RAPDs can be found among snap bean cultivars. These RAPDs may be useful for the unique identification of bean varieties, the organization of bean germplasm, and applications of molecular markers to bean breeding.  相似文献   

10.
A comparison of random amplified polymorphic DNA (RAPD) was used to investigate genetic polymorphisms among 25 isolates of Giardia intestinalis and to assess the utility of RAPD for subtype detection and genealogical analysis. Using data obtained for six human and 19 animal-derived isolates in polymerase chain reactions using 13 different primers, phylogenetic trees were constructed and bootstrap values computed by the program FreeTree. Three major clades were distinguished, corresponding to previously defined genetic assemblages A, B, and E. The purported specificity of assemblage E genotypes for artiodactyl hosts was supported. Assemblages A and B showed wide host spectra, including human and animal hosts. No correlation was found between the genotype of analyzed isolates and the presence or absence of the double-stranded RNA Giardiavirus. The results indicate that RAPD data provide reliable genetic information that can be used for both "fingerprinting" and genealogical purposes.  相似文献   

11.
The phylogenetic relationships of 36 locally grown Prunus armeniaca genotypes which are collected from nine sampling sites from two valleys viz. Nubra (9,600 ft) and Leh (11,500 ft) of trans-Himalayan region were analyzed using 31 PCR markers (20 RAPDs and 11 ISSRs). This is the first report of molecular genetic diversity studies in apricot from this region of the world. RAPD analysis yielded 139 fragments, of which 136 were polymorphic, with an average of 6.8 polymorphic fragments per primer. ISSR analysis produced 58 bands, of which 56 were polymorphic, with an average of 5.09 polymorphic fragments per primer. The primers based on (CT)n produced maximum number of bands (nine) while, (AT)n and many other motifs gave no amplification. RAPD markers were found more efficient with regards to polymorphism detection, as they detected 97.84 % as compared to 96.5 % for ISSR markers. Clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrogram were compared, whereas the pattern of clustering of the genotypes remained more or less the same in RAPD and combined data of RAPD + ISSR. The results of PCA analysis were comparable to the cluster analysis. These analyses, allowed us to identify the groups corresponding to the two apricot collection sites.Key words: Prunus armeniaca, Apricot, Genetic Diversity, RAPD, ISSR, AMOVA  相似文献   

12.
Genetic similarity among 45 Brassica Oleracea genotypes was compared using two molecular markers, random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLPs). The genotypes included 37 broccolis (var. italica), five cauliflowers (var. botrytis) and three cabbages (var. capitata) which represented a wide range of commercially-available germplasm, and included open-pollinated cultivars, commercial hybrids, and inbred parents of hybrid cultivars. Fifty-six polymorphic RFLP bands and 181 polymorphic RAPD bands were generated using 15 random cDNA probes and 62 10-mer primers, respectively. The objectives were to compare RFLP and RAPD markers with regard to their (1) sampling variance, (2) rank correlations of genetic distance among sub-samples, and (3) inheritance. A bootstrap procedure was used to generate 200 random samples of size n (n=2,3,5,... 55) independently from the RAPD and RFLP data sets. The coefficient of variance (CV) was estimated for each sample. Pooled regressions of the coefficient of variance on bootstrap sample size indicated that the rate of decrease in CV with increasing sample size was the same for RFLPs and RAPDs. The rank correlation between the Nei-Li genetic similarity values for all pairs of genotypes (990) based on RFLP and RAPD data was 0.745. Differences were observed between the RFLP and RAPD dendrograms of the 45 genotypes. Overlap in the distributions of rank correlations between independent sub-samples from the RAPD data set, compared to correlations between RFLP and RAPD sub-samples, suggest that observed differences in estimation of genetic similarity between RAPDs and RFLPs is largely due to sampling error rather than due to DNA-based differences in how RAPDs and RFLPs reveal polymorphisms. A crossing algorithm was used to generate hypothetical banding patterns of hybrids based on the genotypes of the parents. The results of this study indicate that RAPDs provide a level of resolution equivalent to RFLPs for detemination of the genetic relationships among genotypes.  相似文献   

13.
金银花五个品系的RAPD分析及DNA指纹图谱的建立   总被引:5,自引:0,他引:5  
运用RAPD技术,对5个金银花品系进行遗传多样性研究并构建这5个金银花品系的DNA指纹图谱。从80个引物中筛选出25个带纹清晰,多态性好的引物用于实验。其中,引物SBSD06的扩增条带可以清楚明确区分5个品系,建立其DNA指纹图谱。在清晰、稳定出现的170条带中,153条带具有多态性。按UPGMA法进行聚类分析,计算其遗传相似系数,结果显示,金银花5个品系聚为两类,与其形态学分类结果相符。  相似文献   

14.
Random amplified polymorphic DNA (RAPD) markers have been used to characterize the genetic diversity among 35 spring wheat cultivars and lines with different levels of Fusarium resistance. The objectives of this study were to determine RAPD-based genetic similarity between accessions and to derive associations between Fusarium head blight (FHB) and RAPD markers. Two bulked DNA from either highly resistant lines or susceptible lines were used to screen polymorphic primers. Out of 160 screened primers, 17 primers generated reproducible and polymorphic fragments. Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm, which corresponded well with the results of principal component analysis and separated the 35 genotypes into two groups. Association analysis between RAPD markers and the FHB index detected three RAPD markers, H19(1000), F2(500) and B1(2400), significantly associated with FHB-resistant genotypes. These results suggest that a collection of unrelated genotypes can be used to identify markers linked to an agronomically important quantitative trait like FHB. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.  相似文献   

15.
 Genetic diversity in random amplified polymorphic DNAs (RAPDs) was studied in 110 genotypes of the tetraploid wild progenitor of wheat, Triticum dicoccoides, from 11 populations sampled in Israel and Turkey. Our results show high level of diversity of RAPD markers in wild wheat populations in Israel. The ten primers used in this study amplified 59 scorable RAPD loci of which 48 (81.4%) were polymorphic and 11 monomorphic. RAPD analysis was found to be highly effective in distinguishing genotypes of T. dicoccoides originating from diverse ecogeographical sites in Israel and Turkey, with 95.5% of the 100 genotypes correctly classified into sites of origin by discriminant analysis based on RAPD genotyping. However, interpopulation genetic distances showed no association with geographic distance between the population sites of origin, negating a simple isolation by distance model. Spatial autocorrelation of RAPD frequencies suggests that migration is not influential. Our present RAPD results are non-random and in agreement with the previously obtained allozyme patterns, although the genetic diversity values obtained with RAPDs are much higher than the allozyme values. Significant correlates of RAPD markers with various climatic and soil factors suggest that, as in the case of allozymes, natural selection causes adaptive RAPD ecogeographical differentiation. The results obtained suggest that RAPD markers are useful for the estimation of genetic diversity in wild material of T. dicoccoides and the identification of suitable parents for the development of mapping populations for the tagging of agronomically important traits derived from T. dicoccoides. Received: 13 July 1998 / Accepted: 13 August 1998  相似文献   

16.
Random amplified polymorphic DNA (RAPD) markers are used widely to develop high resolution genetic maps and for genome fingerprinting. Typically, single oligomers of approximately 10 nucleotides are used to PCR amplify characteristic RAPD marker fragments. We describe an efficient method for the direct end-sequencing of gel-purified RAPD fragments using one primer from a set of four 3'-terminal extended (A, T, C or G) oligonucleotides, identical to the RAPD primer but for the single nucleotide extension. Strand-specific DNA sequence could be independently read from each of the RAPD fragments without recourse to strand separation or fragment cloning. Informative RAPD fragments could be readily converted into mapped STS or SCAR loci using this technology. The 3'-extended primers may also be used to amplify independent genomic RAPD markers.  相似文献   

17.
An efficient micropropagation protocol produced large number of plants of the three elite banana (Musa spp.) cultivars Robusta (AAA), Giant Governor (AAA) and Martaman (AAB) from shoot tip meristem. The genetic relationships and fidelity among the cultivars and micropropagated plants as assessed by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers, revealed three somaclonal variants from Robusta and three from Giant Governor. A total of 5330 RAPD and 2741 ISSR fragments were generated with 21 RAPD and 12 ISSR primers in micropropagated plants. The percentage of polymorphic loci by RAPD and ISSR were found to be 1.75, 5.08 in Robusta and 0.83, 5.0 in Giant Governor respectively. Among the two marker systems used, ISSR fingerprinting detected more polymorphism than RAPD in Robusta and Giant Governor with most of the primers showing similar fingerprinting profile, whereas Martaman revealed complete genetic stability.  相似文献   

18.
R-ISSR as a new tool for genomic fingerprinting, mapping, and gene tagging   总被引:1,自引:0,他引:1  
In the present study we propose and test the concept of R-ISSR, a new tool for genomic fingerprinting, mapping, and gene tagging. The concept is based on the fact that primers for inter-simple sequence repeat (ISSR) and random-amplified polymorphic DNA (RAPD) analysis elicit different genomic information, and the combined use of these 2 kinds of primers in the same polymerase chain reaction (PCR) reactions might reveal new genomic loci that could not be detected with either technique alone. The feasibility of this tool was first electronically simulated with sequence analysis software andArabidopsis chromosome sequence. Next, different combinations of ISSR and RAPD primers were applied in real PCR reactions to detect new genomic loci in 2 maize lines (Q319 and 1145). Sequencing gels were used to separate PCR products and showed good resolving ability in comparison with agarose gels. RAPD primers could be successfully used with ISSR primers for the detection of new genomic loci and applied in a new way for genomic mapping, fingerprinting, and gene tagging.  相似文献   

19.
The genetic variability and relationships among 20 Mangifera indica genotypes representing 15 endangered and 5 cultivars, obtained from Indian Gir forest region, were analyzed using 10 random amplified polymorphic DNA (RAPD) and 21 inter simple sequence repeat (ISSR) markers. RAPD markers were more efficient than the ISSR assay with regards to polymorphism detection. Also, the average numbers of polymorphic loci per primer, average polymorphic information content (PIC) and primer index (PI) values were more for RAPD than for ISSR. But, total number of genotype specific marker loci, Nei’s genetic diversity (h), Shannon’s information index (I), total heterozygosity (Ht), average heterozygosity (Hs) and mean coefficient of gene differentiation (Gst) were more for ISSR as compared to RAPD markers. The regression test between the two Nei’s genetic diversity indexes showed low regression between RAPD and ISSR based similarities but maximum for RAPD and RAPD + ISSR based similarities. The pattern of clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrogram were compared. Thus, both the markers were equally important for genetic diversity analysis in M. indica.  相似文献   

20.
幽门螺杆菌临床分离株的随机扩增多态性DNA指纹图分析   总被引:1,自引:1,他引:1  
目的:建立武汉及周边地区幽门螺杆菌(Helicobacter pylori,Hp)感染病人胃内分离的Hp的DNA指纹图谱,并进行数理统计分析,探讨Hp基因型与疾病的相互关系,为临床诊断、防治及致病机制提供理论与实践基础.方法:采取随机扩增多态性DNA指纹法(Random amplified polymorphic DNA,RAPD)对48例病人Hp基因组DNA进行PCR反应,其随机引物为:1290 5'-GTGGATGCGA-3'.反应产物经2%琼脂糖凝胶电泳,成像存盘.用统计分析软件(Statistic analysis software,SAS)对Hp DNA指纹图的相似性以及与疾病的相关性进行分析.结果:每个菌株都有其独特的DNA指纹图,显示其基因的多态性;计算机聚类分析显示:Hp DNA指纹图可分为两大类,其与宿主疾病之间有一定程度的相关性(P<0.05).结论:(1)RAPD对 Hp DNA扩增结果是稳定、可靠的,是一种较好的分型方法.(2)幽门螺杆菌感染所致疾病可能与其基因型相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号