首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The herpes simplex 1 virus thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and for imaging intracellular molecular events and cell trafficking in living subjects. Two in vitro methods are available to assay gene expression of HSV1-tk or HSV1-sr39tk in cells or tissues. One method determines the level of HSV1-TK or HSV1-sr39TK enzyme activity in cell or tissue lysates by measuring the amount of the radiolabeled substrates that have been phosphorylated by these enzymes in a fixed amount of cell lysate protein after a fixed incubation time. The other method, called the 'cell-uptake assay', takes into account the natural uptake and efflux characteristics of the radiolabeled substrate by specific cells, in addition to the level of HSV1-TK or HSV1-sr39TK activity. Both of these assays can be used to validate molecular models in cultured cells, prior to studying them in living research subjects. Each of these assays can be completed in one day.  相似文献   

2.
The in vitro differentiation of human induced pluripotent stem cells (hiPSC) to generate specific types of cells is inefficient, and the remaining undifferentiated cells may form teratomas. This raises safety concerns for clinical applications of hiPSC-derived cellular products. To improve the safety of hiPSC, we attempted to site-specifically insert a herpes simplex virus 1 thymidine kinase (HSV1-TK) suicide gene at the endogenous OCT4 (POU5F1) locus of hiPSC. Since the endogenous OCT4 promoter is active in undifferentiated cells only, we speculated that the HSV1-TK suicide gene will be transcribed in undifferentiated cells only and that the remaining undifferentiated cells can be depleted by treating them with the prodrug ganciclovir (GCV) prior to transplantation. To insert the HSV1-TK gene at the OCT4 locus, we cotransfected hiPSC with a pair of plasmids encoding an OCT4-specific zinc finger nuclease (ZFN) and a donor plasmid harboring a promoter-less transgene cassette consisting of HSV1-TK and puromycin resistance gene sequences, flanked by OCT4 gene sequences. Puromycin resistant clones were established and characterized regarding their sensitivity to GCV and the site of integration of the HSV1-TK/puromycin resistance gene cassette. Of the nine puromycin-resistant iPSC clones analyzed, three contained the HSV1-TK transgene at the OCT4 locus, but they were not sensitive to GCV. The other six clones were GCV-sensitive, but the TK gene was located at off-target sites. These TK-expressing hiPSC clones remained GCV sensitive for up to 90 days, indicating that TK transgene expression was stable. Possible reasons for our failed attempt to selectively target the OCT4 locus are discussed.  相似文献   

3.
The herpes simplex virus type 1 thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and to image intracellular molecular events and cell trafficking in living subjects. The expression of these PRGs can be imaged using 18F- or 124I-radiolabeled acycloguanosine or pyrimidine analog PET reporter probes (PRPs). This protocol describes the procedures for imaging HSV1-tk or HSV1-sr39tk PRG expression in living subjects with the acycloguanosine analog 9-4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG). [18F]FHBG is a high-affinity substrate for the HSV1-sr39TK enzyme with relatively low affinity for mammalian TK enzymes, resulting in improved detection sensitivity. Furthermore, [18F]FHBG is approved by the US Food and Drug Administration as an investigational new imaging agent and has been shown to detect HSV1-tk transgene expression in the liver tumors of patients. MicroPET imaging of each small animal can be completed in approximately 1.5 h, and each patient imaging session takes approximately 3 h.  相似文献   

4.
5.
Molecular therapy using viruses would benefit greatly from a non-invasive modality for assessing dissemination of viruses. Here we investigated whether positron emission tomography (PET) scanning using [(124)I]-5-iodo-2'-fluoro-1-beta-d-arabinofuranosyl-uracil (FIAU) could image cells infected with herpes simplex viruses (HSV). Using replication-competent HSV-1 oncolytic viruses with thymidine kinase (TK) under control of different promoters, we demonstrate that viral infection, proliferation and promoter characteristics all interact to influence FIAU accumulation and imaging. In vivo, as few as 1 x 107 viral particles injected into a 0.5-cm human colorectal tumor can be detected by [(124)I]FIAU PET imaging. PET signal intensity is significantly greater at 48 hours compared with that at 8 hours after viral injection, demonstrating that PET scanning can detect changes in TK activity resulting from local viral proliferation. We also show the ability of FIAU-PET scanning to detect differences in viral infectivity at 0.5 log increments. Non-invasive imaging might be useful in assessing biologically relevant distribution of virus in therapies using replication-competent HSV.  相似文献   

6.
Radioiodinated 5-iodo-1-(2-fluoro-2-deoxy-beta-D-arabinofuranosyl)uracil (F *IAU) is most commonly used for noninvasive assessment of herpes simplex virus type 1 thymidine kinase (HSV-1-tk) gene expression. However, it does not permeate the intact blood-brain barrier (BBB) because of its moderate lipophilicity. In this work, three iodo-nucleosides, FIAU, IVFRU, and IVFAU, were radiolabeled with iodine-123 and tested for permeation of the BBB in mice and for potential measurement of HSV-1-tk gene expression in gliomas. The results demonstrate that brain uptake and retention of these nucleosides is not directly related to their lipophilicity. The low brain uptake of IVFAU, in conjunction with its higher and constant brain/blood ratio, may reflect greater stability against hydrolysis of the N-glycosidic bond. In vivo PET evaluations of [(124)I]IVFRU and [(124)I]IVFAU in tumor-bearing mice are warranted.  相似文献   

7.
To develop efficient and safe gene therapy approaches, the herpes simplex virus type 1 thymidine kinase gene (HSV-1-tk) has been shown to function as a marker gene for the direct noninvasive in vivo localization of thymidine kinase (TK) expression by positron emission tomography (PET) using radiolabeled nucleoside analogues as specific TK substrates. Moreover, the gene encoding dopamine type 2 receptor (d2r) could be used as a PET marker gene using specific radiolabeled receptor binding compounds. Here we describe the quantitative colocalization of d2r and HSV-1-tk gene expression mediated from a universal HSV-1 amplicon vector in a subcutaneous human Gli36dEGFR glioma model by PET. The HSV-1 amplicon vector was constructed using a bicistronic gene cassette to contain (1) the d2r80A mutant, which is able to bind its ligand racloprid but unable to activate downstream signal transduction pathways, and (2) the tk39 mutant with enhanced enzymatic activity toward guanosine analogues fused to the green fluorescent protein gene (tk39gfp) serving as a marker gene in cell culture. After infection of human Gli36dEGFR glioma cells with the HSV-d2r80AIREStk39gfp (HSV-DITG) amplicon vector in cell culture, D2 receptor expression and its targeting to the cell surface were determined by Western blotting and immunolabeling. Vector application in vivo served for quantitative colocalization of d2r80A- and tk39gfp-derived PET signals employing the specific D2 receptor binding compound [(11)C]racloprid and the specific TK39 substrate 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl)guanine. Our results demonstrate that for the range of gene expression studied in vivo, both enzymatic and receptor binding assays give comparable quantitative information on the level of vector-mediated gene expression in vivo. The d2r80A in combination with a specific binding compound passing the intact blood-brain barrier might be an alternative marker gene for the noninvasive assessment of vector-mediated gene expression in the brain using PET.  相似文献   

8.
The C-X-C motif chemokine 12 (CXCL12, SDF1a) and its receptor, CXCR4, play a fundamental role in several biological processes, including hematopoiesis, cardiogenesis, cancer progression, and stem cell migration. Noninvasive monitoring of CXCL12 is highly desirable for optimizing strategies that combine mobilization of therapeutic cells to combat cancer or to assist in cardiac tissue repair after myocardial infarction. Here, we report on an MRI reporter gene system for directly monitoring CXCL12 expression in vivo. Glioma cells and human adipose-derived stem cells (hADSC) were transduced with the herpes simplex virus type-1-thymidine kinase (HSV1- tk) reporter gene expressed under the CXCL12 promoter. HSV1-tk expression resulted in accumulation of the PET tracer [125I]FIAU in vitro and in vivo and induced cell death after ganciclovir treatment. Furthermore, the results show that conditional expression of the reporter gene can be induced by hypoxia in transduced cells. Transduced hADSC were incubated with the CEST MRI probe 5-methyl-5, 6- dihydrothymidine (5-MDHT) and transplanted into swine heart. Transplanted cells were clearly visible on Chemical Exchange Saturation Transfer (CEST) MRI using a 3T clinical scanner. Therefore, we conclude that it is possible to image CXCL12 expression with MRI in a large animal model, opening up a possible route to clinical translation.  相似文献   

9.
R325-beta TK+, a herpes simplex virus 1 mutant carrying a 500-base-pair deletion in the alpha 22 gene and the wild-type (beta) thymidine kinase (TK) gene, was previously shown to grow efficiently in HEp-2 and Vero cell lines. We report that in rodent cell lines exemplified by the Rat-1 line, plating efficiency was reduced and growth was multiplicity dependent. A similar multiplicity dependence for growth and lack of virus spread at low multiplicity was seen in resting, confluent human embryonic lung (HEL) cells. The shutoff of synthesis of beta proteins was delayed and the duration of synthesis of gamma proteins was extended in R325-beta TK+-infected HEL cells relative to cells infected with the wild-type parent, but no significant differences were seen in the total accumulation of viral DNA. To quantify the effect on late (gamma 2) gene expression, a recombinant carrying the deletion in the alpha 22 gene and a gamma 2-TK gene (R325-gamma 2 TK) was constructed and compared with a wild-type virus (R3112) carrying a chimeric gamma 2-TK gene. In Vero cells, the gamma 2-TK gene of R325-gamma 2TK was expressed earlier than and at the same level as the gamma 2-TK gene of R3112. In the confluent resting HEL cells, the expression of the gamma 2-TK gene of the alpha 22- virus was grossly reduced relative to that of the alpha 22+ virus. Electron microscopic studies indicated that the number of intranuclear capsids of R325-beta TK+ virus was reduced relative to that of the parent virus in resting confluent HEL cells, but the number of DNA-containing capsids was higher. Notwithstanding the grossly reduced neurovirulence on intracerebral inoculation in mice, R325-beta TK+ virus was able to establish latency in mice. We conclude that (i) the alpha 22 gene affects late (gamma 2) gene expression, and (ii) a host cell factor complements that function of the alpha 22 gene to a greater extent in HEp-2 and Vero cells than in confluent, resting HEL cells.  相似文献   

10.
The synthesis and biological evaluation of '6-(1,3-dihydroxyisobutyl)thymine' (DHBT; 1), which corresponds to 6-[3-hydroxy-2-(hydroxymethyl)propyl]-5-methylpyrimidine-2,4(1H,3H)-dione, is reported. DHBT (1) was designed as a new substrate for herpes simplex virus type-1 thymidine kinase (HSV1 TK). The compound was found to be exclusively phosphorylated by HSV1 TK, and to exhibit good binding affinity (Ki = 35.3+/-1.3 microM). Cell-proliferation assays with HSV1-TK-transduced human osteosarcoma cells (143B-TK+-HSV1-WT) and with both human-thymidine-kinase-1-negative (143B-TK-) and non-transduced parental (MG-63) cells indicate that 1 is less cytotoxic than the standard drug Ganciclovir. Thus, DHBT (1) represents a promising precursor of a nontoxic reporter probe for the monitoring of HSV1 TK gene expression by means of positron-emission tomography (PET).  相似文献   

11.
The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18)F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18)F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18)F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18)F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.  相似文献   

12.
为构建单纯疱疹病毒I型胸苷激酶(HSV1TK)的真核表达载体pcDNA3.1-EGFP/HSV1TK,鉴定其在真核细胞中的表达和功能.以pORF-HSV1TK为模板,PCR扩增的目的基因HSV1TK片段与pMD18-T载体相连接构建重组克隆pMD18-T/HSV1TK.再双酶切出HSV1TK片段,插入pcDNA3.1-EGFP多克隆位点,构建pcDNA3.1-EGFP/ HSV1TK真核表达载体并进行酶切、测序鉴定[1].分别用荧光显微镜观察和RT-PCR方法检测脂质体介导pcDNA3.1-EGFP/ HSV1TK在卵巢癌细胞SKOV3的表达;分别用MTT法和光镜检测胸苷激酶/丙氧鸟苷(HSV1TK/GCV)系统对SKOV3体外杀伤作用及旁观者效应.结果表明,重组载体酶切鉴定结果与预期结果一致,基因序列与GenBank上报道的HSV1TK基因序列完全一致.荧光显微镜观察转染后的细胞发出绿色荧光;RT-PCR结果表明HSV1TK基因能在SKOV3内有效表达.MTT和光镜结果显示转染HSV1TK基因的SKOV3细胞,加入前体药物丙氧鸟苷(GCV)处理后对其有明显的杀伤作用和旁观者效应.成功构建的真核表达载体pcDNA3.1-EGFP/ HSV1TK能在SKOV3细胞中稳定表达,且HSV1TK对卵巢癌细胞株SKOV3体外有强大的杀伤作用和旁观者效应.  相似文献   

13.
Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.  相似文献   

14.
Cytoxicity induced by the herpesvirus thymidine kinase (TK) gene in combination with prodrugs is dependent on cell growth and leads to the elimination of genetically modified cells, thus limiting the duration of expression and efficacy of this treatment in vivo. Here, an effort was made to enhance TK/prodrug efficacy by coexpression of a cyclin-dependent kinase inhibitor (CKI), p27, to render cells resistant to TK/prodrug by inhibiting DNA synthesis. Expression of p27 by transfection substantially reduced cell cycle progression, and its activity was enhanced by mutations designed to stabilize the protein. Coexpression of p27 and TK or a p27/TK fusion protein led to greater prodrug cytotoxicity than that produced by TK alone in the Renca cell line, which is sensitive to bystander killing. Combination gene transfer of this CKI with TK therefore sustained the synthesis of TK by genetically modified cells to enhance the susceptibility of bystander cells to prodrug cytotoxicity and increased the efficacy of this gene transfer approach.  相似文献   

15.
Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. The toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.  相似文献   

16.
Using dot-hybridization with thymidine kinase gene (tk gene) of Herpes simplex virus type 1 (HSV 1) of DNA preparations obtained from isolated metaphase chromosomes and lysate fractions of metaphase cells, which presumably contain smaller particles compared to metaphase chromosomes, it has been shown that the tk gene of HSV 1 is localized in chromosomes of cells of transformant clones unstable in TK+-phenotype. The DNA isolated from the metaphase chromosomes from cells of transformant clones is 1.5- or 2-fold more efficient in transforming TK-Chinese hamster cells than is the total high molecular weight DNA from the same cells. Upon transformation of TK- cells by the high molecular weight DNA from the tk gene of HSV 1-containing clones, varying in the rate of the loss of TK+-phenotypes, the character "rate of the loss of transformant phenotype" is transferred together with the tk gene of HSV 1 in 22% of cases. Cells of rerevertant clones, produced from TK- subclones of transformant clones, display the rate of the loss of transformant phenotype characteristic of cells of parental TK+-clones. A comparison of the results allows a conclusion that DNA sequences, determining the character "rate of the loss of transformant phenotype", are linked tightly with the transforming DNA proper containing the tk gene of HSV 1, but are not localized inside such a DNA.  相似文献   

17.
A study was made of the effect of an DNA methylation inhibitor 5-azacytidine (azaC) on the frequency of reversion to a thymidine kinase-positive (TK+) phenotype in 5-bromodeoxy-uridine (BrdU)-resistant subclones obtained from clones of Chinese hamster cells transformed by thymidine kinase gene (tk-gene) of Herpes simplex virus type 1 (HSV1). It is shown that in 8 of 15 BrdU-resistant subclones azaC increases 2-1000-fold the frequency of reversion to TK+ phenotype. Variations in the inducibility of reversions to TK+ phenotype indicate that the DNA methylation associated with TK- phenotype affects but differently tk gene of HSV1. Cultivation of TK+ cells of transformant clones in the presence of azaC may lead to stabilization (or decrease in the rate of the loss) of TK+ phenotype, or may not influence the stability of transformant phenotype. The reaction of TK+ cells of transformant clones depends both on genetically determined rate of the loss of TK+ phenotype, and on the structure of transforming DNA introduced to cells. A conclusion is drawn that the TK- phenotype of transformant clone cells arises due to processes which are not associated with methylation of tk gene of HSV1 in spite of the fact that such a methylation may later stabilize significantly the TK- phenotype.  相似文献   

18.
Infection of trigeminal ganglion by herpes simplex virus (HSV) thymidine kinase-negative (TK-) mutants was investigated in mixed infection studies in mice. Mice were corneally inoculated with TK- HSV alone or with mixtures of TK- HSV-TK+ HSV. When inoculated alone, an arabinosylthymine-selected HSV type 1 TK- mutant and a HSV type 2 TK- deletion mutant infected mouse ocular tissues but rarely infected ganglion tissues. However, both TK- mutants readily infected ganglion tissues when they were inoculated in mixtures with TK+ HSV. By means of mixed infection studies, it was demonstrated that TK- HSV could readily establish acute and latent ganglion infections. It was thought that the frequent infection of trigeminal ganglion tissue by both TK- mutants after mixed TK(-)-TK+ HSV infection was the result of in vivo complementation. After mixed TK(-)-TK+ HSV infection and subsequent cultivation of ganglion explants in arabinosylthymine, results supported the conclusion that when TK- was present in ganglia it was in the same neurons that contained TK+ HSV.  相似文献   

19.
20.
The expression of the thymidine-thymidylate kinase (HSV1-TK), (ATP: thymidine 5'-phosphotransferase; EC 2.7.1.21) of herpes simplex virus type 1 endows the host cell with a conditional lethal phenotype which depends on the presence of nucleoside analogues metabolized by this enzyme into toxic inhibitors of DNA replication. To generate a recombinant baculovirus that could be selected against by nucleoside analogs, the HSV1-tk coding sequence was placed under the control of the Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV) immediate early promoterm IE-1(0), and this construction was introduced via homologous recombination into the polyhedrin locus of AcMNPV. Two recombinant baculoviruses harboring this gene construct at the polyhedrin locus were isolated and tested for their ability to replicate in the presence of various concentrations of the nucleoside analog 9-(1,3-Dihydroxy-2-propoxymethyl)guanine (Ganciclovir). Neither Sf9 lepidopteran cell viability nor replication of wild type or beta-Galactosidase-expressing recombinant AcMNPVs were affected by concentrations of Ganciclovir up to 100 microM. In contrast, replication of the recombinant AcMNPV virus harboring the HSV1-tk gene was inhibited by Ganciclovir in a dose-dependent manner. The inhibition was detectable at 2 microM and complete at 100 microM. This property was exploited in model isolations aimed at purifying new recombinant viruses having lost this counter-selectable gene marker as a result of homologous recombination at the polyhedrin locus after cotransfection of the viral DNA with a replacement vector. After being propagated in the presence of Ganciclovir, the progeny of such co-transfections contained over 85% recombinant viruses, demonstrating that counter-selection of parental HSV1-tk-containing viruses by Ganciclovir constitutes a novel approach for recombinant baculovirus isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号