首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new compact wastewater treatment system for use in single houses has been constructed in eastern Norway. The system is based on the principles of sub-surface flow constructed wetlands using various types of Filtralite as filter media. It consists of a septic tank followed by an aerobic biofilter succeeded by an upflow saturated filter. The aerobic biofilter is essential to remove organic matter and achieve nitrification, while the upflow filter polishes the wastewater and removes microorganisms and phosphorus. During the first 3 years of operation, the system has show stable and high removal with the following average values measured from the outlet of septic tank to the outlet of the upflow filter: 97.0%-BOD7, 30%-N, 99.4%-P, and 70.8%-SS. No Escherichia coli or somatic coliphages have been detected in the effluent. Due to considerable removal of organic mater, nutrients, and pathogens, the effluent will not negatively affect water and soil ecosystems. The system requires low maintenance and is designed to remove phosphorus for 5 years before renewal of the upflow filter media. When saturated with phosphorus, the media is a suitable fertilizer for plant production.  相似文献   

2.
A completely mixed anaerobic filter, in which the influent organic matter concentration is diluted with recirculated effluent, was found to effectively remove organic matter concentrations in high strength acidic wastewater, at a range of organic loadings and shock loads. Increases in organic loading had a substantial effect on the relative organic matter composition of the effluent and the magnitude of the fatty acid fraction showed a pattern inverse to that of the nitrogenous organics. A fixed film model was formulated which indicated that at high substrate concentrations the substrate removal rate is proportional to the square root of the substrate concentration and the specific area of the filter medium. A comparison of the biofilm model and the measured effluent concentrations tended to indicate that the substrate removal rate is primarily affected by substrate concentration, specific surface area, flow rate, and temperature of the unit.  相似文献   

3.
A process train consisting of the following sequence of unit processes, a berl-saddle-packed anaerobic filter, an expanded bed, granular activated carbon anaerobic filter, and an activated sludge nitrification system was evaluated for the treatment of a synthetically prepared coal gasification wastewater. The first-stage anaerobic filter resulted in very little removal of organic matter and no methane production. Excellent reduction in organic matter occurred in the granular activated carbon anaerobic filter. The removal mechanism was initially adsorptive and near the end of the study, removal of organic matter was primarily through conversion to methane gas. It is felt that the success of the activated carbon anaerobic filter was due to the ability of the activated carbon to sequester some components of the wastewater that were toxic to the mixed culture of anaerobic microorganisms. The activated sludge nitrification system resulted in complete ammonia oxidation and was very efficient in final effluent polishing.  相似文献   

4.
Fishmeal industries processes produce effluents with high load organic matter. These effluents, after recycling and physical-chemical pretreatment, have a high organic content (5-6 g COD/l), proteins (3-5 g/l), salinity close to sea water, sodium chloride (30 g/l) and sulphate (1-3.3 g/l). An anaerobic filter was used for the treatment of this wastewater, with marine sediment as anaerobic inoculum. Anaerobic filter removed up to 70% of the influent COD concentrations at organic loading rates (OLR) of 9.5 and 14.3 (g/l d) and sulphate up to 80% at OLR of 7.1 and 14.3 (g/l d) whereas the pH ranged between 7.0 and 7.5. These results show that anaerobic filter systems are applicable to recycled wastewaters from fishmeal.  相似文献   

5.
Sewage effluent from the anaerobic settling tanks of the Oxfam Sanitation System contained reduced populations of Enterobacteriaceae and small numbers of non-cholera vibrios (NCVs). This effluent was passed through percolating 'filters' constructed either of broken honeycomb bricks or corrugated iron in a zig-zag stack. Multiplication of NCVs occurred in both filter matrices. Laboratory experiments confirmed that NCVs were able to multiply in sewage effluent in static culture and also that Vibrio cholerae El Tor was unable to multiply in this liquor, and died rapidly.  相似文献   

6.
《Process Biochemistry》2004,39(6):767-772
An aerobic biological filter with floating filter media was tested using domestic wastewater to determine the optimum operating and backwashing parameters in this study. This system was designed for a small-scale joint treatment plant and 4 mm diameter polystyrene foam pellets were used as the filter media. As the backwash is the most important point for using a floating biofilter, “air shot” system, a turbulent-flow backwashing utilising the air reverse syphon and the buoyancy of the filter media, was developed for this purpose. Through the test, the optimum position of the diffuser tube and the structure of the backwashing device were determined. It was confirmed that the system could achieve effluent biological oxygen demand (BOD) of under 10 mg/l, and a nitrification rate of over 86% at a BOD loading of 0.7 kg/m3 per day and “total-nitrogen (T-N) loading” of 0.16 kg/m3 per day. The backwashing frequency should be as many times as possible per cycle to remove the sloughed sludge thoroughly in order to maintain good effluent quality after backwashing.  相似文献   

7.
An environmental monitoring study was carried out between 1993, 1995 on the site of a marine trout farm located in the Bay of Cherbourg (English Channel), France. The study dealt with the sea bottom and solid waste from the farm, and concerns the deposition rate, sediment analysis and chemistry (fine fraction < 63 μm, organic matter, carbon, nitrogen and trace metals such as Cu and Zn), bottom oxygen demand, benthic macrofauna, and underwater video surveying. The observed impact was very moderate and localised, and showed no real abnormality. This was mainly due to the strong hydrodynamics characterising the site. A separate phase of the same study dealt with dissolved waste and the water mass (Part One: Current and water quality).  相似文献   

8.
海洋碳迁移转化与主要化学驱动因子的相互关系   总被引:3,自引:0,他引:3  
分析了化学驱动因子对海洋碳迁移转化过程的影响.海洋碳迁移转化与各种化学驱动因子参与的生物地球化学过程密切相关.营养盐水平、pH、溶解氧浓度(DO)、氧化还原电位(Eh)、SO42-及硫电位(Es)等主要化学驱动因子的消长导致了海洋化学环境的变化,进而对海洋碳的迁移转化产生影响.在营养盐的供给和生物吸收情况良好的海域,CO2由于光合作用,并通过沉降有机物的氧化,不断被转移到海水深层,使得海水中的CO2分压(PCO2)降低,CO2的海-气交换量和有机碳输出通量增大,从使该海域表现为CO2的汇.由于CO2的溶解与吸收以及有机物的降解造成了海洋环境的日益酸化,引起了海水中碳酸盐溶解度增大;沉积物中酸碱环境的变化也与有机物的矿化以及碳酸盐的溶解、沉淀过程密切相关.此外,DO、Eh、SO42-及Es的变化与水体中有机碳的矿化分解过程和碳在沉积层中沉积埋葬过程相耦合.在水体中,高DO、高Eh利于有机碳向无机碳转化;而在DO和Eh较低的沉积环境中,高SO42-不利于有机碳的埋葬与保存.  相似文献   

9.
海水富营养化对海洋细菌影响的研究进展   总被引:2,自引:0,他引:2  
张瑜斌  章洁香  孙省利 《生态学报》2012,32(10):3225-3232
综述了海水富营养化对海洋细菌影响的研究进展。随着海水富营养化程度的增加,海洋细菌数量或生物量增加;反硝化细菌、大肠菌群尤其是厌氧性的硫酸盐还原菌和产甲烷菌等典型细菌生理群数量增加;浮游细菌群落结构随富营养化递增趋于简单,物种多样性降低;富营养化也明显导致细菌群落正常功能活性的紊乱。海水富营养化对细菌群落的结构和功能有着深远的影响。  相似文献   

10.
Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near‐shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007–2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ13C and δ15N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10–20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass‐balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near‐shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m2), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008–2009) and years with extensive sea ice breakout (2012–2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near‐shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem.  相似文献   

11.
“Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine “harmful algal bloom” in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.  相似文献   

12.
Oysters feed by removing particles from the water. This food is composed of complex mixtures of living microorganisms, detritus, and inorganic particles that widely range in size. It has been speculated that some marine heterotrophic microorganisms, such as Vibrio parahaemolyticus, could enter in this digestive process and persist in the oyster tissue. Since some strains of V. parahaemolyticus are pathogenic for humans, these bacteria are considered to be a constant menace for health and aquaculture. In order to improve the safety of marine products it is imperative to obtain more knowledge about Tiostrea chilensis and its interactions with V. parahaemolyticus. In this study V. parahaemolyticus ATCC 17802 was tagged using plasmid pKV111, which carries the gfp gene that codifies a Green Fluorescent Protein (GFP), thereby allowing these strains (VpGFP) to be detected under epifluorescence microscopy. Results obtained showed that T. chilensis can filter VpGFP directly from sea water and suggested that most of them were digested by oysters. However, in the postharvest stage, a small fraction can remain in oyster tissues after depuration and VpGFP can rapidly grow if the bivalves are stored at room temperature.  相似文献   

13.
ABSTRACT

Underwater sound recording of animals uses specialized techniques to obtain faithful copies of sounds produced by animals during their normal activities underwater. Techniques have to be unobtrusive as well as nondisturbing to avoid changing the animal behaviors. The first scientific recording of underwater sounds from a marine mammal at sea was by William E. Schevill and Barbara Lawrence in 1948. Although the equipment has changed considerably since then, the techniques, approaches to animals and environmental impediments have remained essentially the same. However, the frequency and dynamic ranges of underwater sounds can easily exceed terrestrial sounds, so the selection of suitable equipment is critical. The elements of a useful system for bioacoustic recording of marine animals include the hydrophone, impedance transformer/preamplifier, cable, signal amplifier, recorder and sound monitor. The important criteria for each of these is discussed, along with directional listening systems, and the need for calibrations to verify the performance of the entire underwater recording system. For each situation, the ideal system is the one with the best compromise of interactive components to record that particular sound spectrum.  相似文献   

14.
Significance of ocean carbonate budgets for the global carbon cycle   总被引:2,自引:0,他引:2  
Changes in the trace gas composition of the atmosphere over glacial–interglacial cycles are linked to changes in the oceanic carbon cycle. This paper examines the role of biologically driven fluxes of organic and inorganic carbon in modifying the carbon dioxide chemistry of the oceans, and the corresponding implications for the partitioning of CO2 between the atmosphere and ocean. Relevant details of the marine carbon system are presented together with an assessment of the significance of remineralization and dissolution processes. Recent estimates of the marine carbonate fluxes show significant uncertainties and inconsistencies which must be resolved in order to assess fully the role of the oceans' biota in the marine carbon system. Various types of ocean carbon cycle models have been developed in order to interpret the changes in past atmospheric carbon dioxide. Some take account of the role of the oceans' biota, focussing in the main on the cycling of organic matter. Relatively few have considered the role of the carbonate pump and the subtle interactions between organic and inorganic carbon cycling. The significance of carbonate formation and dissolution, and of the effects of global change on the marine carbonate system, for air–sea fluxes of CO2 are discussed. Finally some recommendations for future research are made in order to improve our understanding of how spatial and temporal variation in marine carbonate fluxes, in conjunction with processes determining the oxidation and burial of organic matter in the oceans, affect levels of CO2 in the atmosphere.  相似文献   

15.
Marine and terrestrial ecosystems are connected via transfers of nutrients and organic matter in river discharges. In coastal seas, such freshwater outflows create prominent turbidity plumes. These plumes are areas of high biological activity in the pelagos, of which zooplankton is a key element. Conceptually, the increased biomass of zooplankton consumers in plumes can be supported by two alternative trophic pathways—consumption of fresh marine phytoplankton production stimulated by riverine nutrients, or direct trophic subsidies through the uptake of terrestrial and estuarine organic matter flushed to sea. The relative importance of these two pathways has not been established previously. Isotopic tracing (carbon and nitrogen) was used to measure the extent of incorporation of marine versus terrestrial matter into mesozooplankton consumers in the plumes off a small estuary in eastern Australia. Replicate zooplankton samples were taken during baseflow conditions with minimal freshwater influence to the sea, and during pulsed discharge events that generated turbidity plumes in coastal waters. Food sources utilized by zooplankton differed among locations and with the strength of freshwater flow. Terrestrial and estuarine carbon only made a sizeable contribution (47%) to the carbon demands of zooplankton in the lower estuary during pulsed freshwater flows. By contrast, in plumes that developed in nearshore marine waters, phytoplankton supplied up to 90% of the dietary carbon of zooplankton feeding in the plumes. Overall, it was “fresh” carbon, fixed by marine phytoplankton, the growth of which became stimulated by fluvial nutrient exports, that dominated energy flows in plume regions. The trophic role of terrestrial and estuarine organic exports was comparatively minor. The trophic dynamics of plankton in small coastal plumes is closely linked to variations in freshwater flow, but this coupling operates mainly through the enhancement of in-situ phytoplankton production rather than cross-boundary transfers of organic matter to marine food webs in the pelagos.  相似文献   

16.
17.
We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems.Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition.Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.  相似文献   

18.
This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters – the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.  相似文献   

19.
S ummary . The population of aerobic bacteria present in the waters of a tip-lagoon system being used to purify a coke-oven effluent has been investigated. Though organisms capable of degrading phenol were detected, the total bacterial population was low, mainly due to a deficiency of orthophosphate and lack of aeration. Phenols can be removed from coke-oven effluents by allowing them to percolate through columns of material from colliery waste tips. Bacteria need not be present for this to occur though the presence of bacteria capable of degrading phenol were detected in the liquid coming from such columns. Only traces of thiocyanate are removed. If a biological filter can be developed, as on columns packed with gravel, better removal of phenols and thiocyanate occurs, but it is doubtful if bacteria play any significant role in the purification of coke-oven waste liquors percolating through large tips of colliery waste.  相似文献   

20.
Wastewater treatment plants use a variety of bioreactor types and configurations to remove organic matter and nutrients. Little is known regarding the effects of different configurations and within-plant immigration on microbial community dynamics. Previously, we found that the structure of ammonia-oxidizing bacterial (AOB) communities in a full-scale dispersed growth activated sludge bioreactor correlated strongly with levels of NO2 ? entering the reactor from an upstream trickling filter. Here, to further examine this puzzling association, we profile within-plant microbial biogeography (spatial variation) and test the hypothesis that substantial microbial immigration occurs along a transect (raw influent, trickling filter biofilm, trickling filter effluent, and activated sludge) at the same full-scale wastewater treatment plant. AOB amoA gene abundance increased >30-fold between influent and trickling filter effluent concomitant with NO2 ? production, indicating unexpected growth and activity of AOB within the trickling filter. Nitrosomonas europaea was the dominant AOB phylotype in trickling filter biofilm and effluent, while a distinct “Nitrosomonas-like” lineage dominated in activated sludge. Prior time series indicated that this “Nitrosomonas-like” lineage was dominant when NO2 ? levels in the trickling filter effluent (i.e., activated sludge influent) were low, while N. europaea became dominant in the activated sludge when NO2 ? levels were high. This is consistent with the hypothesis that NO2 ? production may cooccur with biofilm sloughing, releasing N. europaea from the trickling filter into the activated sludge bioreactor. Phylogenetic microarray (PhyloChip) analyses revealed significant spatial variation in taxonomic diversity, including a large excess of methanogens in the trickling filter relative to activated sludge and attenuation of Enterobacteriaceae across the transect, and demonstrated transport of a highly diverse microbial community via the trickling filter effluent to the activated sludge bioreactor. Our results provide compelling evidence that substantial immigration between coupled process units occurs and may exert significant influence over microbial community dynamics within staged bioreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号