首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Gupta, K. L. Chachra, P. Bhadola and P. Sodhani
Modified Papanicolaou staining protocol with minimum alcohol use: a cost‐cutting measure for resource‐limited settings Objective: To devise a simple, cost‐effective protocol for Papanicolaou (Pap) staining of cervicovaginal smears. Methods: Five hundred coded paired cervical smears were collected from women as part of routine cervical cancer screening. One set of smears was stained by conventional Pap staining protocol (CP) and the other by a modified protocol (MP) in which alcohol was replaced by 1% acetic acid in all the steps except during fixation and prior to mounting; in addition, one alcohol‐based counterstain, OG, was omitted. The smears were examined blindly by the pathologists and then decoded. Each pair of smears was compared and the two protocols were analysed for staining quality and diagnoses by McNemar and chi‐square tests. Results: The staining quality in the MP was satisfactory. The nuclear and cytoplasmic features were comparable to the CP. Cytoplasmic transparency was maintained in the MP and the differential staining of blue/green and pink was acceptable to the pathologists and technicians. The diagnoses agreed in all cases and there was no compromise in interpreting the smears. With MP it took only 3–4 minutes to stain a batch of 50 slides. in contrast to the 20 minutes taken by CP. The MP used almost one‐seventh of the amount of alcohol compared with CP, which translated into a significant cost reduction per smear. Conclusions: The improvised Pap staining protocol with minimum alcohol use is a simple, cost‐effective and technician‐friendly procedure that can be easily adopted in high‐volume, resource‐limited laboratories for mass cervical cancer screening.  相似文献   

2.
A procedure is described in which thick sections (2-10μ or more) of plastic-embedded plant tissues are mounted in serial order on slides for use in routine light microscopy. Sections are cut with a steel knife on a rotary microtome while the block and blade are bathed with 40% alcohol. The cut sections are placed, in order, in 50% alcohol in the small wells of modified plastic trays where they become flat, pliable and suitable for subsequent handling. Sections remain separate and in correct order in the trays while they are stained, washed, and prepared for final mounting on slides. Mounting involves a simple and rapid procedure of transferring the sections to a slide and heating first on a 70-75 C hot plate (to slowly evaporate the water around the section and to partially affix the section) and then on a 100 C hot plate. This second heating ensures adhesion when xylene-base mounting media, which tend to loosen weakly adhered plastic from the slides, are used. The technique of staining the sections loose provides the following advantages: (1) the problems of section loss and entrapment of stain between section and slide during staining are eliminated, (2) relatively high staining temperature, akalinity, and alcohol concentration of the stain solvent (all of which promote loosening of pm-affixed sections from slides during staining) is allowed, and (3) staining is more even and selective. The procedure has been found to be reliable and fast enough to be of value in a significant variety of routine light microscope studies.  相似文献   

3.
A procedure is described in which thick sections (2-10 mu or more) of plastic-embedded plant tissues are mounted in serial order on slides for use in routine light microscopy. Sections are cut with a steel knife on a rotary microtome while the block and blade are bathed with 40% alcohol. The cut sections are placed, in order, in 50% alcohol in the small wells of modified plastic trays where they become flat, pliable and suitable for subsequent handling. Sections remain separate and in correct order in the trays while they are stained, washed, and prepared for final mounting on slides. Mounting involves a simple and rapid procedure of transferring the sections to a slide and heating first on a 70-75 C hot plate (to slowly evaporate the water around the section and to partially affix the section) and then on a C hot plate. This second heating ensures adhesion when xylene-base mounting media, which tend to loosen weakly adhered plastic from the slides, are used. The technique of staining the sections loose provides the following advantages: (1) the problems of section loss and entrapment of stain between section and slide during staining are eliminated, (2) relatively high staining temperature, alkalinity, and alcohol concentration of the stain solvent (all of which promote loosening of pre-affixed sections from slides during staining) is allowed, and (3) staining is more even and selective. The procedure has been found to be reliable and fast enough to be of value in a significant variety of routine light microscope studies.  相似文献   

4.
This study had several purposes: to define cytomorphological features of thyroid cells that might be modified by alcohol fixation; to optimize May-Grünwald–Giemsa (MGG) staining on ThinPrep® (TP; Cytyc Inc., Bexborough, MA, USA) slides and to compare the diagnostic accuracy of slides prepared by a liquid-based method with those obtained by conventional technique. This study included 120 cases of ultrasound-guided fine needle aspiration (FNA) of the thyroid and 55 FNAs performed on surgically resected thyroid specimens. Histological control was available in 80 cases. In the first group of 120 FNAs, a split-sample technique was used for the TP. Three screenings were performed: first, an individual screening of the conventional smears (CS) and of the TP, a second screening to compare cells observed on the TP with the histological control and a third screening to assess the previously defined diagnostic criteria. Twenty-seven TP cases (22%) were considered unsatisfactory for diagnosis compared with 10 in CS (8%). The high rate of unsatisfactory cases with TP is likely to be due to the use of the split-sample technique. The sensitivity was 94% for CS and 81% for TP. The specificity was 67% and 60% for CS and TP, respectively. Two occult papillary carcinomas were missed by both methods. As for the MGG staining, the modified technique used for TP resulted in the same quality as the standard procedure. Conversely, TP did however induce uncommon morphological features. In this study, sensitivity and specificity levels are higher for CS than for TP; the difference may be explained by the fact that the methanol fixative used for TP induces some cytological alterations, especially in oncocytic tumours and lymphocytic thyroïditis.  相似文献   

5.
A quadruple staining procedure has been developed for staining pollen tubes in pistil. The staining mixture is made by adding the following in the order given: lactic acid, 80 ml; 1% aqueous malachite green, 4 ml; 1% aqueous acid fuchsia, 6 ml; 1% aqueous aniline blue, 4 ml; 1 % orange G in 50% alcohol, 2 ml; and chloral hydrate, 5 g. Pistils are fixed for 6 hr in modified Carnoy's fluid (absolute alcohol:chloroform:glacial acetic acid 6:4:1), hydrated in descending alcohols, transferred to stain and held there for 24 hr at 45±2 C They were then transferred to a clearing and softening fluid containing 78 ml lactic acid, 10 g phenol, 10 g chloral hydrate and 2 ml 1% orange G. The pistils were held there for 24 hr at 45±2 C, hydrolyzed in the clearing and softening fluid at 58±1 C for SO min, then stored in lactic acid for later use or immediately mounted in a drop of medium containing equal parts of lactic acid and glycerol for examination. Pollen tubes are stained dark blue to bluish red and stylar tissue light green to light greenish blue. This stain permits pollen tubes to be traced even up to their entry into the micropyle.  相似文献   

6.
A simple, PCR-based method has been developed for the rapid genotyping of large numbers of samples. The method involves a alkaline extraction of DNA from plant tissue using a slight modification of the procedure of Wang et al. (Nucleic Acids Res 21:4153–4154, 1993). Template DNA is amplified using allelespecific associated primers (ASAPs) which, at stringent annealing temperatures, generate only a single DNA fragment and only in those individuals possessing the appropriate allele. This approach eliminates the need to separate amplified DNA fragments by electrophoresis. Instead, samples processing the appropriate allele are identified by direct staining of DNA with ethidium bromide. Total technician time required for extraction, amplification and detection of 96 samples is about 4 h, and this time requirement can be reduced by automation. Excluding labor, cost per sample is less than $0.40. The method is tested using the codominant isozyme marker, alcohol dehydrogenase (Adh-1) gene in pea (Pisum sativum), and applied to the screening of photoperiod genes in common bean (Phaseolus vulgaris L.).  相似文献   

7.
A quadruple staining procedure has been developed for staining pollen tubes in pistil. The staining mixture is made by adding the following in the order given: lactic acid, 80 ml; 1% aqueous malachite green, 4 ml; 1% aqueous acid fuchsin, 6 ml; 1% aqueous aniline blue, 4 ml; 1% orange G in 50% alcohol, 2 ml; and chloral hydrate, 5 g. Pistils are fixed for 6 hr in modified Carnoy's fluid (absolute alcohol:chloroform:glacial acetic acid 6:4:1), hydrated in descending alcohols, transferred to stain and held there for 24 hr at 45 +/- 2 C. They were then transferred to a clearing and softening fluid containing 78 ml lactic acid, 10 g phenol, 10 g chloral hydrate and 2 ml 1% orange G. The pistils were held there for 24 hr at 45 +/- 2 C, hydrolyzed in the clearing and softening fluid at 58 +/- 1 C for 30 min, then stored in lactic acid for later use or immediately mounted in a drop of medium containing equal parts of lactic acid and glycerol for examination. Pollen tubes are stained dark blue to bluish red and stylar tissue light green to light greenish blue. This stain permits pollen tubes to be traced even up to their entry into the micropyle.  相似文献   

8.
For the demonstration of the sex chromatin body in human tissues, fixation in 95% alcohol or modified Davidson's solution (95% alcohol, 30; formalin, 20; glacial acetic acid, 10; distilled water, 30) was best. The staining procedure chosen for most materials is the following: Mounted preparations are coated with celloidin, hydrated, hydrolyzed 20 min in 52V HCl at 20-25°C, rinsed thoroughly in several changes of distilled water and transferred to a buffered thionin solution. This consists of 3 parts: (1) A saturated solution of thionin in 50% alcohol (filtered); (2) Michaelis buffer: sodium acetate (3 H2O), 9.714 gm; sodium barbiturate, 14.714 gm; CO2-free distilled water, 500 ml; and (3) 0.1N HCl. To make the staining solution, mix 28.0 ml of the buffer solution with 32.0 ml of 0.1N HCl and bring the total volume to 100.0 ml with the thionin solution. Its pH should be 5.7 × 0.2, and care should be exercised that no acid is carried over from the hydrolyzing solution, since this would progressively lower the pH. The staining time varies from 15 to 60 min, depending on the specimen, but the shortest time consistent with adequate staining gives the clearest preparations. Slides are rinsed in distilled water and 50% alcohol and allowed to remain in 70% alcohol until the heavy clouds of stain cease to appear. Differentiation is completed in 80% and 95% alcohol, followed by dehydration in absolute alcohol, clearing in xylene and applying a cover glass with a synthetic resin (G. T. Gurr's DePeX was used). The sex chromatin is deep blue-violet and sharply contrasted against the lightly colored particulate chromatin of the nucleus. Cytoplasm remains unstained but fibrin and related structures show metachromasia. Chromosomes are well demonstrated if present. The method works on all types of tissues, is simpler and quicker than the Feulgen method, and often yields superior results.  相似文献   

9.
Two new methods applicable to the staining of fixed and fresh frozen tissue sections are presented herein. In addition certain improvements are suggested for the technic reported by Geschickter, Walker, Hjort and Moulton (1931). In brief the procedures are as follows:

The thionin eosinate method of Geschickter et al (1931). This procedure has been modified as follows:

A mixture of diethylene glycol, 40 parts, ethylene glycol, 40 parts, and grain alcohol, 20 parts is superior to ethylene glycol, 80 parts, and ethyl alcohol, 20 parts, as a solvent for the compound stain in that the staining is intensified.

Ethylene glycol monobutyl ether supplants diethylene glycol monobutyl ether because of its lower viscosity.

Ethyl phthalate replaces butyl phthalate on account of a more satisfactory viscosity.

The methyl green eosinate procedure is the same as the modified thionin eosinate method except for the following variations:

The staining time is increased to one minute.

Decolorization and washing are reduced to about 15 seconds.

The hematoxylin-eosin method. After cutting, the tissue sections are carried thru the following steps:

Unfold in water; transfer to formalin (4 to 40%) for at least 30 seconds; stain in hematoxylin (Harris) for 30 to 60 seconds; wash in water, 5 seconds; decolorize in 0.1% HC1 or saturated aqueous picric acid, 5 seconds; wash in water, S seconds; float in 0.5% ammonia, 5 to 10 seconds; wash in water, 5 seconds; stain in 5% aqueous eosin, 15 seconds1; wash in water, 5 to 10 seconds; dehydrate in a mixture of diethylene glycol, 30 parts, and ethyl alcohol, 70 parts, 5 to 10 seconds; dehydrate in ethylene glycol monobutyl ether, 5 to 10 seconds; clear in ethyl phthalate, 5 to 10 seconds; float on a glass slide, blot with photographic lintless blotter, place a drop of neutral gum damar on the section, and cover with glass cover slip.  相似文献   

10.
在植物病害研究中,观察寄主植物被病原菌入侵的过程非常重要。Solophenyl Flavine 7GFE染料可附着于菌丝,在波长为330~380 nm的激发光下被激发出蓝色荧光。为了更好的观察寄主植物中病原真菌的侵染情况,本实验以Solophenyl Flavine 7GFE为染剂,对寄主植物中病原真菌的侵染情况进行了观察研究。结果显示,用0.002%(M/V)Solophenyl Flavine 7GFE溶于0.1 mol/L Tris-HCl(p H 8.5)配制的染色液染色5 min的效果最佳;使用95%乙醇溶液替代0.15%三氯乙酸(W/V)酒精溶液∶氯仿(V/V)(4∶1)对寄主植物叶片脱色的方法操作简便、毒害较低;染色时省略了番红预染步骤。将改良的染色方法用于晚疫病菌入侵的马铃薯叶片观察取得了良好的效果。该技术是一种改良的、快速有效、安全无毒的观察真菌菌丝入侵植物的荧光染色方法,也适用于观察其他真菌入侵寄主植物组织的过程。  相似文献   

11.
Two new methods applicable to the staining of fixed and fresh frozen tissue sections are presented herein. In addition certain improvements are suggested for the technic reported by Geschickter, Walker, Hjort and Moulton (1931). In brief the procedures are as follows:
  1. The thionin eosinate method of Geschickter et al (1931). This procedure has been modified as follows:
    1. A mixture of diethylene glycol, 40 parts, ethylene glycol, 40 parts, and grain alcohol, 20 parts is superior to ethylene glycol, 80 parts, and ethyl alcohol, 20 parts, as a solvent for the compound stain in that the staining is intensified.
    2. Ethylene glycol monobutyl ether supplants diethylene glycol monobutyl ether because of its lower viscosity.
    3. Ethyl phthalate replaces butyl phthalate on account of a more satisfactory viscosity.
  2. The methyl green eosinate procedure is the same as the modified thionin eosinate method except for the following variations:
    1. The staining time is increased to one minute.
    2. Decolorization and washing are reduced to about 15 seconds.
  3. The hematoxylin-eosin method. After cutting, the tissue sections are carried thru the following steps:


Unfold in water; transfer to formalin (4 to 40%) for at least 30 seconds; stain in hematoxylin (Harris) for 30 to 60 seconds; wash in water, 5 seconds; decolorize in 0.1% HC1 or saturated aqueous picric acid, 5 seconds; wash in water, S seconds; float in 0.5% ammonia, 5 to 10 seconds; wash in water, 5 seconds; stain in 5% aqueous eosin, 15 seconds1; wash in water, 5 to 10 seconds; dehydrate in a mixture of diethylene glycol, 30 parts, and ethyl alcohol, 70 parts, 5 to 10 seconds; dehydrate in ethylene glycol monobutyl ether, 5 to 10 seconds; clear in ethyl phthalate, 5 to 10 seconds; float on a glass slide, blot with photographic lintless blotter, place a drop of neutral gum damar on the section, and cover with glass cover slip.  相似文献   

12.
The standard technics for methyl green-pyronin staining are found to give inconstant results, often with poor differentiation between chromatin and cytoplasm. A modified procedure is described using n butyl alcohol for differentiation after aqueous methyl green staining and counter-staining with pyronin in acetone. After 6 minutes in 0.2% aqueous methyl green (chloroform extracted), the section is blotted, differentiated in n butanol, counter-stained 30-90 seconds in acetone saturated with pyronin (less concentrated solutions may be preferred for some purposes), cleared in cedar oil and xylene and mounted. This technic retains the value of methyl green as a histochemical detector for polymerized desoxyribo-nucleic acid (DNA). The intensity of the stain, however, is considerably greater than that obtained with the procedure designed for quantitative (stoichiometric) photometric estimation of polymerized DNA. Pyronin serves primarily as a counterstain, and is not found to be a reliable indicator of ribonucleic acid either by this method or others which have been described.  相似文献   

13.
The standard technics for methyl green-pyronin staining are found to give inconstant results, often with poor differentiation between chromatin and cytoplasm. A modified procedure is described using n butyl alcohol for differentiation after aqueous methyl green staining and counter-staining with pyronin in acetone. After 6 minutes in 0.2% aqueous methyl green (chloroform extracted), the section is blotted, differentiated in n butanol, counter-stained 30–90 seconds in acetone saturated with pyronin (less concentrated solutions may be preferred for some purposes), cleared in cedar oil and xylene and mounted. This technic retains the value of methyl green as a histochemical detector for polymerized desoxyribo-nucleic acid (DNA). The intensity of the stain, however, is considerably greater than that obtained with the procedure designed for quantitative (stoichiometric) photometric estimation of polymerized DNA. Pyronin serves primarily as a counterstain, and is not found to be a reliable indicator of ribonucleic acid either by this method or others which have been described.  相似文献   

14.
A basic fuchsin-crystal violet staining sequence for demonstration of juxtaglomerular granular cells in epoxy-embedded tissues is rapid and results in slides with excellent contrast and intensity. Procedure: Cut sections 0.3-0.6 μ thick. Hydrate through xylene and alcohol to water. Stain in modified Goodpasture's stain (basic fuchsin, 1; aniline, 1; phenol, 1; 30% alcohol, 100) for 20-30 sec; rinse in tap water; stain in modified Stirling's (crystal violet, 5; alcohol, 10; aniline, 2; water, 88) for 20-30 sec; rinse in tap water and dry on a hotplate; mount in a synthetic resin. Granular cells of the juxtaglomerular apparatus are stained an intense dark blue by the crystal violet. Arterial elastic membranes and collagen are pale blue. Other structures are shades of red.  相似文献   

15.
Cartilage and bone of the developing skeleton can be reliably differentiated in whole-mount preparations with toluidine blue-alizarin red S staining after FAA fixation. The recommended staining procedure is based chiefly on the use of newborn white and Swiss-Webster mice, 4-9 days postnatal, but was tested also on mice and rats 3-8 wk of age. Procedure: Sacrifice, skin, eviscerate, remove body fat, and place specimens in FAA (formalin, 1; acetic acid, 1; 70% alcohol, 8) for approximately 40 min. Stain in 0.06% toluidine blue made in 70% ethyl alcohol for 48 hr at room temperature. Use 20 volumes of stain solution to the estimated volume of the specimen. Destain soft tissues in 35% ethyl alcohol, 20 hr; 50%, 28 hr; and 70%, 8 hr. Counterstain in a freshly prepared 1% aqueous solution of KOH to which is added 2-3 drops of 0.1% alizarin red S per 100 ml of solution. Each day for 3 days, transfer the specimen to a fresh 1% KOH-alizarin mixture, or until the bones have reached the desired intensity of red and soft tissues have cleared. Rinse in water, and place in a 1:1 mixture of glycerol and ethyl alcohol for 1-2 hr, then transfer the specimen to fresh glycerol-alcohol for final clearing and storage. Older mice and rats require procedural modifications: (1) fixation for 2 hr, (2) 0.12% toluidine blue, (3) maceration for 4 days in 3% KOH-alizarin, and (4) preliminary clearing for 24 hr in a mixture of glycerol, 2; 70% ethyl alcohol, 2; and benzyl alcohol, 1 (v/v) before placing in a 1:1 alcohol-glycerol mixture.  相似文献   

16.
Suspensions of sea urchin embryos spread over the surface of glass slides were attached to the glass by a rapid coagulation of the surface with alcohol. This was done either by dipping the glass slides into absolute alcohol or by a short exposure to alcohol vapor. Thereafter the slides were immediately transferred to the fixative. A suitable procedure includes fixation with Carnoy's fluid (alcohol, chloroform, acetic acid; 6:3:1) and staining with Gomori's hematoxylin after acid hydrolysis.  相似文献   

17.
High-throughput screening of microalgae for use as a potential feedstock for biodiesel requires a reliable method for the rapid detection of intracellular neutral lipid content. In this study, we report a modified and improved Nile Red (NR) fluorescence staining procedure for use as a rapid and sensitive screening tool to estimate levels of intracellular neutral lipid in the picopleustonic microalgae, Nannochloropsis sp. Addition of either glycerol or dimethyl sulfoxide (DMSO) into microalgae cultures greatly enhances lipid staining efficiency and increases the fluorescence intensity of stained cells. The optimized procedure requires glycerol and DMSO at the concentration of 0.1 and 0.165 g mL−1, respectively, for peak fluorescence in a live culture of Nannochloropsis sp. Incubation for 5 min for glycerol-NR staining and 10 min for DMSO-NR staining at room temperature, in darkness, is used for the NR concentration of 0.3 and 0.7 μg mL−1 for glycerol and DMSO, respectively. For the selection of lipid-rich cells of Nannochloropsis sp. using flow cytometric cell sorting, the glycerol-NR procedure is recommended as glycerol, unlike DMSO, does not inhibit subsequent growth of sorted cells.  相似文献   

18.
Differential staining of cell components of spermatozoa is readily accomplished in Epon or Araldite sections 0.5-1 μ thick from rat and hamster testis and epididymis, and stained as follows: 1% aqueous toluidine blue buffered at pH 6, 0.5-3 min at 90 C; washed in distilled water; 1% basic fuchsin in 50% alcohol, 3-5 min at 20-25 C; differentiated with 70% alcohol; allowed to dry; and mounted in a resin of high refraction (DPX was used). Results: acrosome, bright magenta; nucleus, deep blue; mitochondrial sheath of the middle-piece, pinkish purple; and tail, pale red. This procedure combined with staining of collagen by applying 2% aqueous phosphotungstic acid 1-2 min as a mordant, followed by 1% light green in 50% alcohol containing 1% acetic acid, 1-2 min at 20-25 C, gives polychromatic staining and is useful as a general stain for other epoxy-embedded tissues.  相似文献   

19.
The staining procedure is based on the theory that the freshly cut surface of embedded material will absorb stain only in the exposed tissue elements, provided that the embedding compound itself will not absorb the staining fluid. Concentrated stains are used for short intervals to insure minimum penetration. For paraffin embedded materials: (1) Cut block, preferably on microtome, to the desired tissue surface. (2) Rinse in absolute alcohol. (3) Float face down in stain. (Ripe, concentrated alum hematoxylin—Galigher's formula recommended—will stain in 10 to IS minutes. Heidenhain's iron hematoxylin works exceptionally well in some cases.) Mordant 20% alum 5 to 10 minutes, briefly rinse, and stain comparable 5 to 10 minutes in 1 to 1.5% hematoxylin. (4) Allow to become blue in tap water (for hematoxylin stains). (5) Counter-stain if desired. (6) Dehydrate in absolute alcohol for not more than 10 minutes. (7) Dry for 15 to 20 minutes. (8) Trim block to 2-3 mm. and mount between two cover glasses by use of microflame. Attach mount to slide with balsam. For celloidin embedded materials: (1) Dehydrate block with 90% alcohol, phenol-toluene, finally pure toluene. (2) Rinse cut surface with 90% alcohol, then apply stain. (3) Wash, after hematoxylin stains, counterstain if desired. (4) Dehydrate surface, 90% alcohol, phenol toluene, pure toluene, and mount in medium dissolved in toluene.

Possible applications of surface staining technic are suggested and illustrated.  相似文献   

20.
Gangane N  Anshu  Singh R 《Acta cytologica》2008,52(3):325-328
OBJECTIVE: To correlate acid-fast bacilli (AFB) positivity with cytomorphologic patterns of tuberculous lymphadenitis and evaluate bleach concentration method in diagnosing lymph node tuberculosis compared to Ziehl-Neelsen (ZN) method. STUDY DESIGN: One hundred cases of tuberculous lymphadenitis diagnosed by fine needle aspiration cytology (FNAC) were analyzed and classified into 6 cytomorphologic patterns and correlated with bacillary load using routine and modified bleach methods of ZN staining. Smears were graded for AFB positivity. Sensitivity of routine ZN and modified bleach concentration was compared. RESULTS: The classic cytomorphologic pattern of tuberculosis showing epithelioid granulomas, Langerhans giant cells and caseous necrosis was seen in 23% of cases. Routine ZN staining detected AFB in 27% of cases and the modified bleach method in 72%. In 58 cases the modified bleach method had a higher grade of AFB positivity than the routine method. The modified bleach method did not miss any AFB positivity detected on routine ZN staining. CONCLUSION: The modified bleach method demonstrated AFB positivity in 72% of cases. AFB positivity grade was much higher than with routine ZN staining, making bacilli easily visible, with shorter screening time. The modified bleach method is inexpensive, easily performed and more sensitive and safe than routine ZN staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号