首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Quinolinone 1 is a potent maxi-K potassium channel opener. In an effort to design analogs of 1 with a better inhibitory profile toward the CYP2C9 isozyme, the two acidic sites were chemically modified independently to generate a number of analogs. These analogs were evaluated as maxi-K channel openers in vitro using Xenopus laevis oocytes expressing cloned hSlo maxi-K channels. Compounds 15, 17, and 19 showed potent activity as maxi-K channel openers and were further evaluated for inhibition of the activity of the CYP2C9 isozyme. Compounds 17 and 19 showed diminished inhibitory potency against 2C9 and also against a panel of other more common CYP isozymes.  相似文献   

3.
Recent evidence shows that peroxisome proliferator-activated receptor gamma (PPARgamma) ligands induce the antiangiogenic effect in endothelial cells and tumors. In the present study, we elucidated the involvement of maxi-K channel activation in the antiangiogenic effect of rosiglitazone, a well known PPARgamma ligand in human umbilical vein endothelial cells. We found that the antiangiogenic effects of rosiglitazone were reversed by either bisphenol A diaglycidyl ether, a PPARgamma antagonist, or iberiotoxin, a maxi-K channel blocker. Knockdown of maxi-K channel expression also reversed the antiangiogenic effects. Iberiotoxin reversed the rosiglitazone-induced hyperpolarization while having no effect on the endogenous PPARgamma activation, suggesting that rosiglitazone activates maxi-K channel via PPARgamma. In the rosiglitazone-induced antiangiogenic process, endothelial nitric-oxide synthase-Ser1179 phosphorylation and NO production were significantly elevated, and treatment with the NOS inhibitor N(G)-monomethyl-L-arginine acetate abolished the antiangiogenic and apoptotic effects of rosiglitazone, indicating NO as a key mediator of the rosiglitazone actions. In conclusion, rosiglitazone significantly inhibited VEGF165-induced angiogenesis by a proapoptotic mechanism via PPARgamma-mediated NO production, followed by maxi-K channel opening.  相似文献   

4.
5.
A novel series of 4-aryl-3-(mercapto)quinolin-2-one derivatives was prepared and evaluated as openers of the cloned maxi-K channel hSlo expressed in Xenopus laevis oocytes by utilizing electrophysiological methods. The effect of these maxi-K openers on corporal smooth muscle was studied in vitro using isolated rabbit corpus cavernosum. In vivo efficacy has been demonstrated with a selective maxi-K opening relaxant in a rat model of erectile function.  相似文献   

6.
Multiple cell-signaling pathways converge to modulate large-conductance, voltage- and Ca2+-sensitive K+ channel (maxi-K channel) activity and buffer cell excitability in human myometrial smooth muscle cells (hMSMCs). Recent evidence indicates that maxi-K channel proteins can target to membrane microdomains; however, their association with other proteins within these macromolecular complexes has not been elucidated. Biochemical isolation of detergent-resistant membrane fractions from human myometrium demonstrates the presence of maxi-K channels in lipid raft microdomains, which cofractionate with caveolins. In both nonpregnant and late-pregnant myometrium, maxi-K channels associate and colocalize with caveolar scaffolding proteins caveolin-1 and caveolin-2, but not caveolin-3. Disruption of cultured hMSMC caveolar complexes by cholesterol depletion with cyclodextrin increases an iberiotoxin-sensitive K+ current. Coimmunoprecipitations have indicated that the maxi-K channel also is associated with both - and -actin. Immunocytochemical analysis indicates colocalization of maxi-K channels, actin, and caveolin-1 in primary cultures of hMSMCs. Further experiments using immunoelectron microscopy have shown the proximity of both actin and the maxi-K channel within the same cell surface caveolar structures. Functionally, disruption of the actin cytoskeleton in cultured hMSMCs by cytochalasin D and latrunculin A greatly increased the open-state probability of the channel, while stabilization of actin cytoskeleton with jasplakinolide abolished the effect of latrunculin A. These data indicate that the actin cytoskeleton is involved as part of a caveolar complex in the regulation of myometrial maxi-K channel function. potassium channel; membrane microdomain  相似文献   

7.
The maxi-K channel from bovine aortic smooth muscle consists of a pore-forming alpha subunit and a regulatory beta1 subunit that modifies the biophysical and pharmacological properties of the alpha subunit. In the present study, we examine ChTX-S10A blocking kinetics of single maxi-K channels in planar lipid bilayers from smooth muscle or from tsA-201 cells transiently transfected with either alpha or alpha+beta 1 subunits. Under low external ionic strength conditions, maxi-K channels from smooth muscle showed ChTX-S10A block times, 48 +/- 12 s, that were similar to those expressing alpha+beta 1 subunits, 51 +/- 16 s. In contrast, with the alpha subunit alone, ChTX-S10A block times were much shorter, 5 +/- 0.6 s, and were qualitatively similar to previously reported values for the skeletal muscle maxi-K channel. Increasing the external ionic strength caused a decrease in ChTX-S10A block times for maxi-K channel complexes of alpha+beta 1 subunits but not of alpha subunits alone. These findings indicate that it may be possible to predict the association of beta 1 subunits with native maxi-K channels by monitoring the kinetics of ChTX blockade of single channels, and they suggest that maxi-K channels in skeletal muscle do not contain a beta 1 subunit like the one present in smooth muscle. To further test this hypothesis, we examined the binding and cross-linking properties of [(125)I]-IbTX-D19Y/Y36F to both bovine smooth muscle and rabbit skeletal muscle membranes. [(125)I]-IbTX-D19Y/Y36F binds to rabbit skeletal muscle membranes with the same affinity as it does to smooth muscle membranes. However, specific cross-linking of [(125)I]-IbTX-D19Y/Y36F was observed into the beta 1 subunit of smooth muscle but not in skeletal muscle. Taken together, these data suggest that studies of ChTX block of single maxi-K channels provide an approach for characterizing structural and functional features of the alpha/beta 1 interaction.  相似文献   

8.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

9.
A series of 1,3-diaryl 1,2,4-(4H)-triazol-5-ones was prepared and shown by electrophysiological analysis to activate a cloned maxi-K channel mSlo (or hSlo) expressed in Xenopus laevis oocytes. The effects of these structurally novel maxi-K channel openers on bladder contractile function were studied in vitro using isolated rat bladder strips pre-contracted with carbachol. Several 1,3-diaryl 1,2,4-(4H)-triazol-5-one derivatives were found to be potent smooth muscle relaxants but this activity did not completely correlate with maxi-K channel opening.  相似文献   

10.
Estrogens exert their biological action via both genomic and non-genomic mechanisms. Proteins different from classical estradiol receptors are believed to mediate the latter effects. Here we demonstrate that the maxi-K channel functions as an estrogen-binding protein in transfected HEK293 cells. Whole-cell maxi-K channel currents and protein expression were attenuated by exposure to either 17alpha- or 17beta-estradiol. This effect was dose-dependent for 17beta-estradiol at concentrations ranging from 10 nm to 1 microm, while 17alpha-estradiol inhibited channel expression only at 1 microm. These effects were mediated by direct low affinity binding of estradiol to the maxi-K channel but not to its accessory beta1-subunit, as revealed by cell membrane estradiol binding assays. However, specific binding of estradiol to the channel was facilitated by the presence of the beta1 subunit. Addition of MG-132, a blocker of proteasomal degradation, stabilized channel expression. These data suggest that channel down-regulation is mediated by estrogen-induced proteasomal degradation, similar to the pathway used for estrogen receptor degradation. Membrane expression of endogenous maxi-K channels in cultured vascular smooth muscle cells was also attenuated by prolonged exposure to 17alpha- and 17beta-estradiol. Thus our studies demonstrate that estrogen binds to maxi-K channels and may directly regulate channel expression and function. These results will have important implications in understanding estradiol-induced effects in multiple tissues including vascular smooth muscle.  相似文献   

11.
Acute oxygen sensing in heme oxygenase-2 null mice   总被引:3,自引:0,他引:3       下载免费PDF全文
Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K(+) channels and has been proposed to be the acute O(2) sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O(2) sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent genes, including the maxi-K(+) channel alpha-subunit. However, sensitivity to hypoxia of CB is remarkably similar in HO-2 null animals and their control littermates. Moreover, the response to hypoxia in mouse and rat CB cells was maintained after blockade of maxi-K(+) channels with iberiotoxin. Hypoxia responsiveness of the adrenal medulla (AM) (another acutely responding O(2)-sensitive organ) was also unaltered by HO-2 deficiency. Our data suggest that redox disregulation resulting from HO-2 deficiency affects maxi-K(+) channel gene expression but it does not alter the intrinsic O(2) sensitivity of CB or AM cells. Therefore, HO-2 is not a universally used acute O(2) sensor.  相似文献   

12.
A series of 4-aryl-3-aminoquinoline-2-one derivatives was synthesized and evaluated as activators of the cloned maxi-K channel mSlo (hSlo) expressed in Xenopus laevis oocytes using electrophysiological methods. A brain penetrable activator of maxi-K channels was identified and shown to be significantly active in the MCAO model of stroke.  相似文献   

13.
The physiological success of fluid-secreting tissues relies on a regulated interplay between Ca(2+)-activated Cl(-) and K(+) channels. Parotid acinar cells express two types of Ca(2+)-activated K(+) channels: intermediate conductance IK1 channels and maxi-K channels. The IK1 channel is encoded by the K(Ca)3.1 gene, and the K(Ca)1.1 gene is a likely candidate for the maxi-K channel. To confirm the genetic identity of the maxi-K channel and to probe its specific roles, we studied parotid glands in mice with the K(Ca)1.1 gene ablated. Parotid acinar cells from these animals lacked maxi-K channels, confirming their genetic identity. The stimulated parotid gland fluid secretion rate was normal, but the sodium and potassium content of the secreted fluid was altered. In addition, we found that the regulatory volume decrease in acinar cells was substantially impaired in K(Ca)1.1-null animals. We examined fluid secretion from animals with both K(+) channel genes deleted. The secretion rate was severely reduced, and the ion content of the secreted fluid was significantly changed. We measured the membrane potentials of acinar cells from wild-type mice and from animals with either or both K(+) channel genes ablated. They revealed that the observed functional effects on fluid secretion reflected alterations in cell membrane voltage. Our findings show that the maxi-K channels are critical for the regulatory volume decrease in these cells and that they play an important role in the sodium uptake and potassium secretion process in the ducts of these fluid-secreting salivary glands.  相似文献   

14.
High-conductance calcium-activated potassium (maxi-K) channels comprise a specialized family of K+ channels. They are unique in their dual requirement for depolarization and Ca2+ binding for transition to the open, or conducting, state. Ion conduction through maxi-K channels is blocked by a family of venom-derived peptides, such as charybdotoxin and iberiotoxin. These peptides have been used to study function and structure of maxi-K channels, to identify novel channel modulators, and to follow the purification of functional maxi-K channels from smooth muscle. The channel consists of two dissimilar subunits, and . The subunit is a member of theslo Ca2+-activated K+ channel gene family and forms the ion conduction pore. The subunit is a structurally unique, membrane-spanning protein that contributes to channel gating and pharmacology. Potent, selective maxi-K channel effectors (both agonists and blockers) of low molecular weight have been identified from natural product sources. These agents, together with peptidyl inhibitors and site-directed antibodies raised against and subunit sequences, can be used to anatomically map maxi-K channel expression, and to study the physiologic role of maxi-K channels in various tissues. One goal of such investigations is to determine whether maxi-K channels represent novel therapeutic targets.  相似文献   

15.

Background  

One determinant of the total K+ myometrial smooth muscle cell (MSMC) current is the large conductance, calcium- and voltage-activated potassium channel (maxi-K channel). This channel provides a repolarizing current in response to excitatory stimuli, most notably in response to increases in the levels of intracellular Ca2+, and blocking the channel by pharmacological means induces the depolarization of MSMCs and also enhances contraction strength. In MSMCs, maxi-K channels can reside in the caveolae, where they associate with the scaffolding protein caveolin-1 (cav-1). The aim of this study was to investigate the consequences of this interaction - more specifically, how disruption of the association between the maxi-K channel and cav-1 may influence the current expression and excitability of myometrial cells - with the aim of better understanding the mechanisms that underlie the regulation of normal and aberrant uterine function.  相似文献   

16.
K channels in the cell membrane of the insulin-secreting RINm5F cell line were studied using the patch-clamp technique in cell-attached patch mode. With 140 mM K in the pipette, two channels displaying different conductive and kinetics properties were observed. A voltage-independent, inward-rectifying, 55-pS channel was active at rest (no glucose, -70 mV), but was almost completely inhibited by 5 mM glucose. A 140-pS channel was seen in the absence of glucose only after cell membrane depolarization with high (30 mM) K. This channel was voltage dependent, with a linear slope conductance between -60 and +60 mV, and was completely inhibited only by greater than 15 mM glucose. The former channel we identify as an ATP-sensitive channel previously described in excised patches and refer to it as the K(ATP) channel. The latter, because of its large conductance and voltage-dependent kinetics, will be referred to as the maxi-K(V) channel, adopting a nomenclature previously used to classify highly conductive K channels (Latorre, R., and C. Miller, 1983, Journal of Membrane Biology, 71:11-30). In addition to glucose, mannose and 2-ketoisocaproate, which also initiate insulin secretion and electrical activity in the islet beta cell, reduced the activity of both the K(ATP) and the maxi-K(V) channel. Lactate and arginine, which potentiate but do not initiate insulin secretion or beta cell electrical activity in normal islets, each caused a large reduction in maxi-K(V) channel activity, without consistently affecting the activity of K(ATP) channels. Another agonist that potentiates insulin secretion and electrical activity in normal cells, the tumor-promoting phorbol ester TPA, blocked maxi-K(V) channel activity while stimulating the activity of the K(ATP) channel, thereby implicating phosphorylation in the control of channel activity. These results indicate that metabolic substrates that initiate electrical activity and insulin secretion in normal beta cells reduce the activity of both the K(ATP) and the maxi-K(V) channel, while potentiating agents reduce only the maxi-K(V) channel. The possible role of these two channels in the processes of initiation and potentiation of the beta cell response is discussed.  相似文献   

17.
Dehydrosoyasaponin-I (DHS-I) is a potent activator of high-conductance, calcium-activated potassium (maxi-K) channels. Interaction of DHS-I with maxi-K channels from bovine aortic smooth muscle was studied after incorporating single channels into planar lipid bilayers. Nanomolar amounts of intracellular DHS-I caused the appearance of discrete episodes of high channel open probability interrupted by periods of apparently normal activity. Statistical analysis of these periods revealed two clearly separable gating modes that likely reflect binding and unbinding of DHS-I. Kinetic analysis of durations of DHS-I-modified modes suggested DHS-I activates maxi-K channels through a high-order reaction. Average durations of DHS-I-modified modes increased with DHS-I concentration, and distributions of these mode durations contained two or more exponential components. In addition, dose-dependent increases in channel open probability from low initial values were high order with average Hill slopes of 2.4–2.9 under different conditions, suggesting at least three to four DHS-I molecules bind to maximally activate the channel. Changes in membrane potential over a 60-mV range appeared to have little effect on DHS-I binding. DHS-I modified calcium- and voltage-dependent channel gating. 100 nM DHS-I caused a threefold decrease in concentration of calcium required to half maximally open channels. DHS-I shifted the midpoint voltage for channel opening to more hyperpolarized potentials with a maximum shift of −105 mV. 100 nM DHS-I had a larger effect on voltage-dependent compared with calcium-dependent channel gating, suggesting DHS-I may differentiate these gating mechanisms. A model specifying four identical, noninteracting binding sites, where DHS-I binds to open conformations with 10–20-fold higher affinity than to closed conformations, explained changes in voltage-dependent gating and DHS-I-induced modes. This model of channel activation by DHS-I may provide a framework for understanding protein structures underlying maxi-K channel gating, and may provide a basis for understanding ligand activation of other ion channels.  相似文献   

18.
During ischemic stroke, neurons at risk are exposed to pathologically high levels of intracellular calcium (Ca++), initiating a fatal biochemical cascade. To protect these neurons, we have developed openers of large-conductance, Ca++-activated (maxi-K or BK) potassium channels, thereby augmenting an endogenous mechanism for regulating Ca++ entry and membrane potential. The novel fluoro-oxindoles BMS-204352 and racemic compound 1 are potent, effective and uniquely Ca++-sensitive openers of maxi-K channels. In rat models of permanent large-vessel stroke, BMS-204352 provided significant levels of cortical neuroprotection when administered two hours after the onset of occlusion, but had no effects on blood pressure or cerebral blood flow. This novel approach may restrict Ca++ entry in neurons at risk while having minimal side effects.  相似文献   

19.
Noxiustoxin (NxTX) displays an extraordinary ability to discriminate between large conductance, calcium-activated potassium (maxi-K) channels and voltage-gated potassium (Kv1.3) channels. To identify features that contribute to this specificity, we constructed several NxTX mutants and examined their effects on whole cell current through Kv1.3 channels and on current through single maxi-K channels. Recombinant NxTX and the site-specific mutants (P10S, S14W, A25R, A25Delta) all inhibited Kv1.3 channels with Kd values of 6, 30, 0.6, 112, and 166 nM, respectively. In contrast, these same NxTX mutants had no effect on maxi-K channel activity with estimated Kd values exceeding 1 mM. To examine the role of the alpha-carbon backbone in binding specificity, we constructed four NxTX chimeras, which altered the backbone length and the alpha/beta turn. For each of these chimeras, six amino acids comprising the alpha/beta turn in iberiotoxin (IbTX) replaced the corresponding seven amino acids in NxTX (NxTX-YGSSAGA21-27-FGVDRG21-26). The chimeras differed in length of N- and C-terminal residues and in critical contact residues. In contrast to NxTX and its site-directed mutants, all of these chimeras inhibited single maxi-K channels. Under low ionic strength conditions, Kd values ranged from 0.4 to 6 microM, association rate constant values from 3 x 10(7) to 3 x 10(8) M(-1) x s(-1), and time constants for block from 5 to 20 ms. The rapid blocked times suggest that key microscopic interactions at the toxin-maxi-K channel interface may be absent. Under physiologic external ionic strength conditions, these chimera inhibited Kv1.3 channels with Kd values from 30 to 10 000 nM. These results suggest that the extraordinary specificity of NxTX for Kv1.3 over maxi-K channels is controlled, in part, by the toxin alpha-carbon backbone. These differences in the alpha-carbon backbone are likely to reflect fundamental structural differences in the external vestibules of these two channels.  相似文献   

20.
We have investigated the acute effects of 17-beta-estradiol (E2) on K+ channels in MCF-7 breast epithelial cancer cells. E2 induced a rapid and irreversible augmentation of the K+ current for all membrane potentials superior to -25 mV. The effect of E2 was sensitive to Iberiotoxin, Charybdotoxin and TEA and can be elicited in the presence of the anti-estrogen ICI 182780 or be mimicked by the membrane impermeant form E2/BSA. Furthermore, E2/BSA was able to stimulate cell proliferation in a maxi-K inhibitors-sensitive manner. Thus, these results permit us to identify the maxi-K channel as the molecular target of E2 that regulates cell proliferation independently of the estrogen receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号