首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37–0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.  相似文献   

2.
Summary This paper reports studies of large scale, 1500 kg/h, SO2-catalysed prehydrolysis of coniferous wood chips, samples then being hydrolyzed by a wood-saccharifying enzyme system followed by fermentation to ethanol in the laboratory. Hemicellulose hydrolysis using SO2 catalyst (prehydrolysis) was found to be more effective than steam alone (autohydrolysis). Prehydrolysis time was 2 min, with steam pressure at 1.2 to 1.7 MPa (175 to 250 psig), and SO2 catalyst 2.0 to 2.6% on dry wood. The amount of sugars recovered upon enzyme saccharification of the prehydrolysed wood was about 70% of the weight of the wood. When these combined hemicellulose and cellulose sugars were fermented by a pentose-fermenting strain of yeast,Pichia stipitis R, 372 L ethanol/tonne of (dry) wood was obtained.  相似文献   

3.
Aims: The purification and biochemical properties of the 1,4‐β‐xylosidase of an oenological yeast were investigated. Methods and Results: An ethanol‐tolerant 1,4‐β‐xylosidase was purified from cultures of a strain of Pichia membranifaciens grown on xylan at 28°C. The enzyme was purified by sequential chromatography on DEAE cellulose and Sephadex G‐100. The relative molecular mass of the enzyme was determined to be 50 kDa by SDS‐PAGE. The activity of 1,4‐β‐xylosidase was optimum at pH 6·0 and at 35°C. The activity had a Km of 0·48 ± 0·06 mmol l?1 and a Vmax of 7·4 ± 0·1 μmol min?1 mg?1 protein for p‐nitrophenyl‐β‐d ‐xylopyranoside. Conclusions: The enzyme characteristics (pH and thermal stability, low inhibition rate by glucose and ethanol tolerance) make this enzyme a good candidate to be used in enzymatic production of xylose and improvement of hemicellulose saccharification for production of bioethanol. Significance and Impact of the Study: This study may be useful for assessing the ability of the 1,4‐β‐xylosidase from P. membranifaciens to be used in the bioethanol production process.  相似文献   

4.
Mucor indicus fermented dilute-acid lignocellulosic hydrolyzates to ethanol in fed-batch cultivation with complete hexose utilization and partial uptake of xylose. The fungus was tolerant to the inhibitors present in the hydrolyzates. It grew in media containing furfural (1 g/l), hydroxymethylfurfural (1 g/l), vanillin (1 g/l), or acetic acid (7 g/l), but did not germinate directly in the hydrolyzate. However, with fed-batch methodology, after initial growth of M. indicus in 500 ml enzymatic wheat hydrolyzate, lignocellulosic hydrolyzate was fermented with feeding rates 55 and 100 ml/h. The fungus consumed more than 46% of the initial xylose, while less than half of this xylose was excreted in the form of xylitol. The ethanol yield was 0.43 g/g total consumed sugar, and reached the maximum concentration of 19.6 g ethanol/l at the end of feeding phase. Filamentous growth, which is regarded as the main obstacle to large-scale cultivation of M. indicus, was avoided in the fed-batch experiments.  相似文献   

5.
The hemicellulose sugar recovery and ethanol production obtained from SO2-catalyzed steam explosion of a mixed white fir (70%) and ponderosa pine (30%) feedstock containing bark (9% dry weight/dry weight) was assessed. More than 90% of the available hemicellulose sugars could be recovered in the hydrolysate obtained after steam explosion at 195 degrees C, 2.38 min, and 3.91% SO2, with 59% of the original hemicellulose sugars detected in a monomeric form. Despite this high sugar recovery, this hydrolysate showed low ethanol yield (64% of theoretical yield) when fermented with a spent sulfite liquor-adapted strain of Saccharomyces cerevisiae. In contrast, most hydrolysates prepared at higher steam explosion severity showed comparable or higher ethanol yields. Furthermore, the hydrolysates prepared from bark-free feedstock showed better fermentability (87% of theoretical yield) despite containing higher concentration of known inhibitors. The ethanol yield from the hydrolysate prepared from a bark-containing wood sample could be improved to 81% by an extra stage acid hydrolysis (121 degrees C for 1 h in 3% sulfuric acid). This extra stage acid hydrolysis and steam explosion at higher severity conditions seem to improve the fermentability of the hydrolysates by transforming certain inhibitory compounds present in the hydrolysates prepared from the bark-containing feedstock and thus lowering their inhibitory effect on the yeast used for the ethanol fermentation.  相似文献   

6.
The effect of the H2SO4 concentration in the hydrolysis of sunflower‐stalk waste, at 95ºC and using a liquid/solid relation of 20, was studied. In a later stage, the hydrolysates were fermented at different temperatures with the aim of ethanol and xylitol production. A total conversion of the hemicellulose at the acid concentration of 0.5 mol/L was achieved; whereas an acid concentration of 2.5 mol/L was needed to reach the maximum value in the conversion of the cellulose fraction. The analysis of the hydrolysis kinetics has enabled to determine the apparent reaction order, which was 1.3. The hydrolysates from hydrolysis process with H2SO4 0.5 mol/L, once detoxified, were fermented at pH 5.5, temperatures 30, 40, and 50ºC with the yeast Hansenula polymorpha (ATCC 34438), resulting in a sequential uptake of sugars. In relation to ethanol and xylitol yields, the best results were observed at 50°C ( = 0.11 g/g;  = 0.12 g/g). Instantaneous xylitol yields were higher than in ethanol, at the three temperatures essayed. Different phenolic compounds were analyzed in the hydrolysates; hydroxytyrosol was the most abundant (3.79 mg/L). The recovery of these compounds entails the elimination of inhibitors in the fermentation process and the production of high value‐added antioxidant products.  相似文献   

7.
In these studies, we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g L?1) at 190°C for zero min (as soon as temperature reached 190°C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and hydroxymethyl furfural (HMF). The solids loading were 250–300 g L?1. This was followed by enzymatic hydrolysis. After hydrolysis, 89.0 g L?1 sugars, 7.60 g L?1 acetic acid, 0.33 g L?1 furfural, and 0.07 g L?1 HMF were released. This pretreatment and hydrolysis resulted in the release of 57.9% sugars. This was followed by second hydrolysis of the fibrous biomass which resulted in the release of 43.64 g L?1 additional sugars, 2.40 g L?1 acetic acid, zero g L?1 furfural, and zero g L?1 HMF. In both the hydrolyzates, 86.3% sugars present in SSB were released. Fermentation of the hydrolyzate I resulted in poor acetone‐butanol‐ethanol (ABE) fermentation. However, fermentation of the hydrolyzate II was successful and produced 13.43 g L?1 ABE of which butanol was the main product. Use of 2 g L?1 H2SO4 as a pretreatment medium followed by enzymatic hydrolysis resulted in the release of 100.6–93.8% (w/w) sugars from 250 to 300 g L?1 SSB, respectively. LHW or dilute H2SO4 were used to economize production of cellulosic sugars from SSB. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:960–966, 2018  相似文献   

8.
In the production of ethanol from lignocellulosic material, pretreatment of the raw material before enzymatic hydrolysis and fermentation is essential to obtain high overall yields of sugar and ethanol. Two‐step steam pretreatment results in higher ethanol yields from softwood than the standard one‐step pretreatment process. However, the difficulty with separation and washing of the material at high pressure between the two pretreatment steps is a major drawback. In this study, a new one‐step pretreatment procedure was investigated, in which the time‐temperature profile was varied during pretreatment. The efficiency of pretreatment was assessed by performing simultaneous saccharification and fermentation on the pretreated slurries. Pretreatment of SO2‐impregnated softwood performed by varying the temperature (190–226°C), the residence time (5–10 min), and the mode of temperature increase (linear or stepwise), resulted in recovery of about 90% of the mannose and glucose present in the raw material. The highest ethanol yield, 75% of theoretical based on the glucan and mannan content of the raw material, was obtained at pretreatment conditions of 190°C for 12 min. Similar ethanol yields were achieved when running the pretreatment as one‐step (190–200°C), two levels of temperature, at shorter residence time (7 min), which results in lower capital costs for the process. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
Bagasse of Agave tequilana (BAT) is the residual lignocellulosic waste that remains from tequila production. In this study we characterized the chemical composition of BAT, which was further saccharified and fermented to produce ethanol. BAT was constituted by cellulose (42%), hemicellulose (20%), lignin (15%), and other (23%). Saccharification of BAT was carried out at 147°C with 2% sulfuric acid for 15 min, yielding 25.8 g/l of fermentable sugars, corresponding to 36.1% of saccharificable material (cellulose and hemicellulose contents, w/w). The remaining lignocellulosic material was further hydrolyzed by commercial enzymes, ~8.2% of BAT load was incubated for 72 h at 40°C rendering 41 g/l of fermentable sugars corresponding to 73.6% of the saccharificable material (w/w). Mathematic surface response analysis of the acid and enzymatic BAT hydrolysis was used for process optimization. The results showed a satisfactory correlation (R 2 = 0.90) between the obtained and predicted responses. The native yeast Pichia caribbica UM-5 was used to ferment sugar liquors from both acid and enzymatic hydrolysis to ethanol yielding 50 and 87%, respectively. The final optimized process generated 8.99 g ethanol/50 g of BAT, corresponding to an overall 56.75% of theoretical ethanol (w/w). Thus, BAT may be employed as a lignocellulosic raw material for bioethanol production and can contribute to BAT residue elimination from environment.  相似文献   

10.
In this study, an effective pretreatment of dilute NaOH-soaked chestnut shell (CNS) with glycerol–HClO4–water (88.8:1.2:10, w/w/w) media at 130 °C for 30 min was successfully demonstrated. Results revealed that the combination pretreatment removed 66.0 % of lignin and 73.7 % of hemicellulose in untreated CNS. The changes in the structural features (crystallinity, morphology, and porosity) of the solid residue of CNS were characterized with Fourier transform infrared spectroscopy, fluorescent microscope, scanning electron microscopy, and X-ray diffraction. Biotransformation of glycerol–HClO4–water pretreated–NaOH-soaked CNS (50 g/L) with a cocktail of enzymes for 72 h, the reducing sugars and glucose were 39.7 and 33.4 g/L, respectively. Moreover, the recovered hydrolyzates containing 20 g/L glucose had no inhibitory effects on the ethanol-fermenting microorganism, and the ethanol production was 0.45 g/g glucose within 48 h. In conclusion, this combination pretreatment shows promise as pretreatment solvent for wheat straw, although the in-depth exploration of this subject is needed.  相似文献   

11.
A high pressure (200 bar) CO2–H2O process was developed for pretreating lignocellulosic biomass at high‐solid contents, while minimizing chemical inputs. Hardwood was pretreated at 20 and 40 (wt.%) solids. Switchgrass, corn stover, big bluestem, and mixed perennial grasses (a co‐culture of big bluestem and switchgrass) were pretreated at 40 (wt.%) solids. Operating temperatures ranged from 150 to 250°C, and residence times from 20 s to 60 min. At these conditions a biphasic mixture of an H2O‐rich liquid (hydrothermal) phase and a CO2‐rich supercritical phase coexist. Following pretreatment, samples were then enzymatically hydrolyzed. Total yields, defined as the fraction of the theoretical maximum, were determined for glucose, hemicellulose sugars, and two degradation products: furfural and 5‐hydroxymethylfurfural. Response surfaces of yield as a function of temperature and residence time were compared for different moisture contents and biomass species. Pretreatment at 170°C for 60 min gave glucose yields of 77%, 73%, and 68% for 20 and 40 (wt.%) solids mixed hardwood and mixed perennial grasses, respectively. Pretreatment at 160°C for 60 min gave glucan to glucose yields of 81% for switchgrass and 85% for corn stover. Biotechnol. Bioeng. 2010;107: 451–460. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
In these studies, liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed‐batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level of toxic chemicals, in particular acetic acid released from SSB during the hydrolytic process. To be able to ferment the hydrolyzate I obtained from 250 g L?1 SSB hydrolysis, a fed‐batch reactor with in situ butanol recovery was devised. The process was started with the hydrolyzate II and when good cell growth and vigorous fermentation were observed, the hydrolyzate I was slowly fed to the reactor. In this manner the culture was able to ferment all the sugars present in both the hydrolyzates to acetone butanol ethanol (ABE). In a control batch reactor in which ABE was produced from glucose, ABE productivity and yield of 0.42 g L?1 h?1 and 0.36 were obtained, respectively. In the fed‐batch reactor fed with SSB hydrolyzates, these productivity and yield values were 0.44 g L?1 h?1 and 0.45, respectively. ABE yield in the integrated system was high due to utilization of acetic acid to convert to ABE. In summary we were able to utilize both the hydrolyzates obtained from LHW pretreated and enzymatically hydrolyzed SSB (250 g L?1) and convert them to ABE. Complete fermentation was possible due to simultaneous recovery of ABE by vacuum. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:967–972, 2018  相似文献   

13.
Lignocellulose‐derived hydrolyzates typically display a high degree of variation depending on applied biomass source material as well as process conditions. Consequently, this typically results in variable composition such as different sugar concentrations as well as degree and the presence of inhibitors formed during hydrolysis. These key obstacles commonly limit its efficient use as a carbon source for biotechnological conversion. The gram‐negative soil bacterium Pseudomonas putida KT2440 is a promising candidate for a future lignocellulose‐based biotechnology process due to its robustness and versatile metabolism. Recently, P. putida KT2440_xylAB which was able to metabolize the hemicellulose (HC) sugars, xylose and arabinose, was developed and characterized. Building on this, the intent of the study was to evaluate different lignocellulose hydrolyzates as platform substrates for P. putida KT2440 as a model organism for a bio‐based economy. Firstly, hydrolyzates of different origins were evaluated as potential carbon sources by cultivation experiments and determination of cell growth and sugar consumption. Secondly, the content of major toxic substances in cellulose and HC hydrolyzates was determined and their inhibitory effect on bacterial growth was characterized. Thirdly, fed‐batch bioreactor cultivations with hydrolyzate as the carbon source were characterized and a diauxic‐like growth behavior with regard to different sugars was revealed. In this context, a feeding strategy to overcome the diauxic‐like growth behavior preventing accumulation of sugars is proposed and presented. Results obtained in this study represent a first step and proof‐of‐concept toward establishing lignocellulose hydrolyzates as platform substrates for a bio‐based economy.  相似文献   

14.
Phospholipase A activity of Pseudomonas aeruginosa was found only in the membrane fraction under normal conditions, but a part of that activity was converted into soluble form after polymyxin B treatment. This soluble phospholipase A was further activated by addition of 80% saturated (NH4)2SO4 or incubation at 70 ± 5°C for 5 minutes. The phenomenon was confirmed in terms of kinetic parameters. Phospholipase A activity in the sonicates of P. aeruginosa was also markedly enhanced by (NH4)2SO2 at 80% saturated concentration. The mechanism of the activation is discussed.  相似文献   

15.
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase ( PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t‐butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0‐40% (w/v), extract to t‐butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0‐40% (w/v), crude extract to t‐butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26‐36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1340–1347, 2015  相似文献   

16.

Background

Previous studies on the use of SO2 and CO2 as impregnating agent for sugar cane bagasse steam treatment showed comparative and promising results concerning the cellulose enzymatic hydrolysis and the low formation of the inhibitors furfural and hydroxymethylfurfural for the use of CO2 at 205°C/15 min or SO2 at 190°C/5 min. In the present study sugar cane bagasse materials pretreated as aforementioned were analyzed by scanning and transmission electron microscopy (SEM and TEM), X-Ray Diffraction (XRD) and Infrared (FTIR spectroscopy) aiming a better understanding of the structural and chemical changes undergone by the pretreated materials.

Results

SEM and TEM data showed that the structural modifications undergone by the pretreatment with CO2 were less pronounced in comparison to that using SO2, which can be directly related to the combined severity of each pretreatment. According to XRD data, untreated bagasse showed, as expected, a lower crystallinity index (CI = 48.0%) when compared to pretreated samples with SO2 (CI = 65.5%) or CO2 (CI = 56.4%), due to the hemicellulose removal of 68.3% and 40.5%, respectively. FTIR spectroscopy supported SEM, TEM and XRD results, revealing a more extensive action of SO2.

Conclusions

The SEM, TEM, XRD and FTIR spectroscopy techniques used in this work contributed to structural and chemical analysis of the untreated and pretreated bagasse. The images from SEM and TEM can be related to the severity of SO2 pretreatment, which is almost twice higher. The crystallinity index values obtained from XRD showed that pretreated materials have higher values when compared with untreated material, due to the partial removal of hemicellulose after pretreatment. FTIR spectroscopy supported SEM, TEM and XRD results. CO2 can actually be used as impregnating agent for steam pretreatment, although the present study confirmed a more extensive action of SO2.  相似文献   

17.
Lipid extract isolated from biomasses of Lodderomyces elongisporus IMET H 128 grown on gas oil 7(B.p. 240–380°C) and fractions of the lipid extract (acetone soluble and fatty acid fractions) reduced the concentration of potato virus X in inoculated as well as in secondarily infected leaves markedly. The antiphytoviral inactive phosphatide fraction was converted into a fraction with high activity by partial hydrolysis with SO2 as acting agent.  相似文献   

18.
Simultaneous saccharification and co‐fermentation (SSCF) of waste paper sludge to ethanol was investigated using two recombinant xylose‐fermenting microbes: Zymomonas mobilis 8b and Saccharomyces cerevisiae RWB222. S. cerevisiae RWB222 produced over 40 g/L ethanol with a yield of 0.39 g ethanol/g carbohydrate on paper sludge at 37°C, while similar titers and yields were achieved by Z. mobilis 8b at 30°C. Both S. cerevisiae RWB222 and Z. mobilis 8b exhibited decreasing cell viability at 37°C when producing over 40 g/L ethanol. A high ethanol concentration can account for S. cerevisiae RWB222 viability loss, but ethanol concentration was not the only factor influencing Z. mobilis 8b viability loss at 37°C. Over 3 g/L residual glucose was observed at the end of paper sludge SSCF by Z. mobilis 8b, and a statistical analysis revealed that a high calcium concentration originating from paper sludge, a high ethanol concentration, and a high temperature were the key interactive factors resulting in glucose accumulation. The highest ethanol yields were achieved by SSCF of paper sludge with S. cerevisiae RWB222 at 37°C and Z. mobilis 8b at 30°C. With good sugar consumption at 37°C, S. cerevisiae RWB222 was able to gain an improvement in the polysaccharide to sugar yield compared to that at 30°C, whereas Z. mobilis 8b at 30°C had a lower polysaccharide to sugar yield, but a higher sugar to ethanol yield than S. cerevisiae. Both organisms under optimal conditions achieved a 19% higher overall conversion of paper sludge to ethanol than the non‐xylose utilizing S. cerevisiae D5A at its optimal process temperature of 37°C. Biotechnol. Bioeng. 2010;107: 235–244. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Distilled grain waste eluted from Chinese spirit making is rich in carbohydrates, and could potentially serve as feedstock for the production of bio-fuel ethanol. Our study evaluated two types of saccharification methods that convert distilled grain waste to monosaccharides: enzymatic saccharification and concentrated H2SO4 saccharification. Results showed that enzymatic saccharification performed unsatisfactorily because of inefficient removal of lignin during pretreatment. Concentrated H2SO4 saccharification led to a total sugar recovery efficiency of 79.0 %, and to considerably higher sugar concentrations than enzymatic saccharification. The process of ethanol production from distilled grain waste based on concentrated H2SO4 saccharification was then studied. The process mainly consisted of concentrated H2SO4 saccharification, solid–liquid separation, decoloration, sugar–acid separation, oligosaccharide hydrolysis, and continuous ethanol fermentation. An improved simulated moving bed system was employed to separate sugars from acid after concentrated H2SO4 saccharification, by which 95.8 % of glucose and 85.8 % of xylose went into the sugar-rich fraction, while 83.3 % of H2SO4 went into the acid-rich fraction. A flocculating yeast strain, Saccharomyces cerevisiae KF-7, was used for continuous ethanol fermentation, which produced an ethanol yield of 91.9–98.9 %, based on glucose concentration.  相似文献   

20.

Background  

The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号