首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of stratum corneum (SC) liposomes against the action of surfactants has been revised. To this end, two types of vesicles were used; vesicles formed with the lipid and protein material extracted from SC, and lipid mixtures approximating the SC composition. In this case, the proportion of ceramides (Cer) and cholesteryl sulfate (Chol-sulf) was varied and the relative proportion of the other lipids remained constant. The increasing presence of these two lipids increased the resistance of liposomes against the action of the anionic surfactant sodium dodecyl sulfate (SDS). The rise in the cell-to-cell cohesion that occurred in recessive X-linked ichthyosis due to the accumulation of Chol-sulf could be associated in part to the enhanced stability of (Chol-sulf)-enriched bilayers. It is noteworthy that the surfactant partitioning between bilayers and the aqueous phase increased and decreased, respectively, as the proportion of Cer and Chol-sulf increased. This effect may be attributed to the variations in both the electrostatic interactions lipid-surfactant (electrostatic repulsion between the sulfate groups of both Chol-sulf and SDS), and the hydrophilic lipophilic balance of the lipid mixtures, in which Cer is replaced by the major polar lipid of the mixture (Chol-sulf). The fact that the free surfactant concentration was always smaller than its critical micelle concentration indicates that the permeability alterations were mainly ruled by the action of surfactant monomers, in agreement with the results reported for sublytic interactions of this surfactant with PC liposomes.  相似文献   

2.
The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reversephase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (7∶2), (7∶4), (7∶6), and (7∶7) with or without stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively. The prepared liposomes were evaluated for their entrapment efficiency and in vitro release. Multilamellar liposomes entrapped greater amounts of drug than REVs liposomes. Drug loading was increased by increasing CH content as well as by inclusion of SA. Drug release rate showed an order of negatively charged > neutral > positively charged liposomes, which is the reverse of the data of drug loading efficiency. Physical stability study indicated that approximately 89%, 77%, and 69% of acetazolamide was retained in positive, negative, and neutral MLVs liposomal formulations up to a period of 3 months at 4°C. The intraocular pressure (IOP)-lowering activity of selected acetazolamide liposomal formulations was determined and compared with that of plain liposomes and acetazolamide solution. Multilamellar acetazolamide liposomes revealed more prolonged effect than REVs liposomes. The positively charged and neutral liposomes exhibited greater lowering in IOP and a more prolonged effect than the negatively charged ones. The positive multilamellar liposomes composed of PC:CH:SA (7:4:1) molar ratio showed the maximal response, which reached a value of −7.8±1.04 mmHg after 3 hours of topical administration. Published: January 5, 2007  相似文献   

3.
Phospholipid liposomes composed of phosphatidylcholine (PC) and cholesterol (chol), bearing the sialoglycoprotein glycophorin (GP), are able to effectively bind Sendai virus particles, but not to be lysed by them. Incorporation of gangliosides (gangl) into the above phospholipid vesicles (yielding liposomes composed of PC/chol/gangl/GP), although not increasing their ability to interact with Sendai virions, rendered them susceptible to the viral lytic activity. This was inferred from the ability of the virus to induce release of carboxyfluorescein (CF) upon interaction at 37 degrees C with liposomes composed of PC/chol/gangl/GP. Lysis of liposomes required the presence of the two viral envelope glycoproteins, namely the hemagglutinin/neuraminidase (HN) and the fusion (F) polypeptides, and was inhibited by phenylmethyl sulfonylfluoride (PMSF), dithiothreitol (DTT) and trypsin, showing that virus-induced lysis of PC/chol/gangl/GP liposomes reflects the fusogenic activity of the virus. Incubation of Sendai virus particles with liposomes containing the acidic phospholipid dicetylphosphate (DCP) but lacking sialic acid containing receptors, also resulted in release of the liposome content. Lysis of these liposomes was due to the activity of the viral HN glycoprotein, therefore not reflecting the natural viral fusogenic activity. Fluorescence dequenching studies, using fluorescently labeled reconstituted Sendai virus envelopes (RSVE), have shown that the viral envelopes are able to fuse with neutral, almost to the same extent, as with negatively charged liposomes. However, fusion with negatively charged liposomes, as opposed to fusion with neutral liposomes, was mediated by the viral HN glycoprotein and not by the viral fusion polypeptide.  相似文献   

4.
Possibility of encapsulation of water-soluble proteins into multilayer liposomes of soybean zwitterionic phospholipid mixtures (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)) was investigated. The influence of the PC/PE ratio (w/w) on efficiency of incorporation of the Bowman-Birk soybean proteinase inhibitor (BBI) and aprotinin (BPTI) into liposomes was studied. Protein encapsulation did not affect liposome sizes. Confocal laser scanning microscopy demonstrated that proteins were located in the central part of the spherical particle and also between bilayers. The study of biological (antitrypsin and antichymotrypsin) activity demonstrated partial spatial shielding of active sites of proteins entrapped in liposomes. The effect of an ionic detergent on the activity of the encapsulated BBI and BPTI is consistent with this hypothesis and suggests that this shielding is reversible. Stability of liposomes was examined using three various media modeling gastrointestinal fluids (gastric and intestinal juices and fluids). Data obtained indicate that the prepared liposomes seem to be promising formulations for BBI and BPTI delivery.  相似文献   

5.
Human transferrin receptor was isolated from Triton X-100 solubilized placental plasma membranes by a rapid one-step chromatographic procedure based on immunoadsorption of the receptortransferrin complex on anti-transferrin Sepharose and lectin-affinity on wheat germ agglutinin. Following exchange of Triton X-100 with CHAPS or n-octylglucoside, the purified receptor was incorporated into egg phosphatidylcholine liposomes upon, detergent removal by dialysis (lipid/protein ratio 15:1 to 45:1 (w/w) Reconstitution of the receptor was confirmed by trypsin cleavage to dissociate the large extracellular receptor domain from the liposomal membranes. Electron micrographs of the receptor-lipid recombinants negatively stained with sodium sillicotungstate, showed ographs of the receptor-lipid recombinants negatively stained with sodium sillicotungstate, showed that the receptor molecules distributed very inhomogeneously on the liposomes, most receptors being clustered. Single copies of the receptor were seen as elongate structures (5×10 nm) oriented with their long axis parallel to the liposome surface and separated from this by a 2–3 nm gap. This result provides evidence for a narrow connecting link between the globular extracellular receptor domain and the membrane spanning segment.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate - PAGE polyacrylaminde gel electrophoresis - PC phosphatidylcholine - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - WGA wheat germ agglutinin  相似文献   

6.
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (ZHER2:342-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as “Affisomes” were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80–100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41°C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16–20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4–12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were?~70% at a protein-lipid ratio of 20 μg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, λex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90–100%) at 41°C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm?~0°C) under similar conditions released only 5–10% calcein at 41°C. Affisomes, when stored at room temperature, retained?>?90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.  相似文献   

7.
The present study aimed to evaluate the potential of liposomes loaded with paromomycin (PA), an aminoglycoside antibiotic associated with poor skin penetration, for the topical treatment of cutaneous leishmaniasis (CL). Fluid liposomes were prepared and characterized for particle size, zeta potential, and drug entrapment. Permeation studies were performed with two in vitro models: intact and stripped skin. The antileishmanial activity of free and liposomal PA was evaluated in BALB/c mice infected by Leishmania (L.) major. Drug entrapment ranged from 10 to 14%, and the type of vesicle had little influence on this parameter. Particle size and polydispersity index of the vesicles composed by phosphatidylcholine (PC) and PC/cholesterol (Chol) ranged from of 516 to 362?nm and 0.7 to 0.4, respectively. PA permeation across intact skin was low, regardless of the formulation tested, while drug penetration into skin (percent of the applied dose) from PC (7.2?±?0.2%) and PC/Chol (4.8?±?0.2%) liposomes was higher than solution (1.9?±?0.1%). PA-loaded liposomes enhanced in vitro drug permeation across stripped skin and improved the in vivo antileishmanial activity in experimentally infected mice. Our findings suggest that the liposomes represent a promising alternative for the topical treatment of CL using PA.  相似文献   

8.
The reconstitution of Na+/K+-ATPase from outer medulla of rabbit kidney into large unilamellar liposomes was achieved through detergent removal by dialysis of mixed micellar solutions of synthetic dioleoyl phosphatidylcholine/octyl glucoside and Na+/K+-ATPase/decyl maltoside or decenyl maltoside. Tight, transport-active liposomes were formed when the lipid and the enzyme were solubilized separately in the nonionic detergents and mixed immediately before starting the dialysis. The two maltoside detergents with different structures of the hydrophobic part of the molecule proved to be well suited for the solubilization of Na+/K+-ATPase with high retention of enzyme activity; the inactivation of enzyme being evidently slower with the unsaturated decenyl maltoside. The diameters of the proteoliposomes, 110 and 170 nm, respectively, were also dependent on the structure of the maltoside detergent, the saturated decyl maltoside producing the bigger liposomes. After freeze-fracture, both preparations exhibited intramembranous particles as structural indicators of successful reconstitution. The electrogenic activity of the reconstituted enzyme was determined by fluorescence measurements with Oxonol VI and by tracer-flux measurements with 22Na+.  相似文献   

9.
Abstract

Dihydropyridopyrazoles are simplified synthetic analogues of podophyllotoxin that can effectively mimic its molecular scaffold and act as potent mitotic spindle poisons in dividing cancer cells. However, despite nanomolar potencies and ease of synthetic preparation, further clinical development of these promising anticancer agents is hampered due to their poor aqueous solubility. In this article, we developed a prodrug strategy that enables incorporation of dihydropyridopyrazoles into liposome bilayers to overcome the solubility issues. The active drug was covalently connected to either myristic or palmitic acid anchor via carboxylesterase hydrolyzable linkage. The resulting prodrugs were self-assembled into liposome bilayers from hydrated lipid films using ultrasound without the need for post-assembly purification. The average particle size of the prodrug-loaded liposomes was about 90?nm. The prodrug incorporation was verified by differential scanning calorimetry, spectrophotometry and gel filtration reaching maximum at 0.3 and 0.35 prodrug/lipid molar ratios for myristic and palmitic conjugates, respectively. However, the ratio of 0.2 was used in the particle size and biological activity experiments to maintain long-term stability of the prodrug-loaded liposomes against phase separation during storage. Antiproliferative activity was tested against HeLa and Jurkat cancer cell lines in vitro showing that the liposomal prodrug retained antitubulin activity of the parent drug and induced apoptosis-mediated cancer cell death. Overall, the established data provide a powerful platform for further clinical development of dihydropyridopyrazoles using liposomes as the drug delivery system.  相似文献   

10.
Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12–13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1–8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI.  相似文献   

11.
The present study was designed to develop and compare acyclovir containing nano-vesicular liposomes and niosomes based on cholesterol, soya L-alpha-lecithin and nonionic surfactant, span 20. The effort was made to study in vitro whether acyclovir-loaded nanovesicles could sustain the release of the drug by increasing residence time and thus, acyclovir could reduce its dose-related systemic toxicity. There were good vesicular distributions in both of the niosomes and the liposomes. The obtained vesicles were within 1 microm and about 35% of them were within a size of 100 nm. The percentage of drug loading varied and the niosomal vesicles contained more drug as compared with the liposomes. When the in vitro drug release was compared, it was found that the liposomes released about 90% drug in 150 min whereas the drug release was just 50% from the niosomal vesicles in 200 min. Again, the niosomes showed better stability compared with the liposomes. Thus, niosome could be a better choice for intravenous delivery of acyclovir.  相似文献   

12.
The fluorescent probe 2-(p-toluidinyl)-naphthalene-6-sodium sulfonate (TNS) was used to study the surface adsorption of sublytic concentrations of the anionic surfactant sodium dodecylsulfonate (C(12)-SO(3)) on phosphatidylcholine (PC) bilayers. The number of adsorbed molecules was quantified by determination of the electrostatic potential (psi(o)) of the bilayers. The abrupt decrease in the fluorescence intensity detected even 10 s after the surfactant addition and the slight fluorescence variations with time indicated that the surfactant adsorption was very fast and almost complete. For a given number of monomers adsorbed a linear dependence between the lipid and C12-SO3 concentrations was obtained, indicating similar adsorption mechanism regardless of the surfactant concentration. Hence, a monomeric adsorption is assumed even in systems with a C12-SO3 concentration above its CMC. In addition, this linear correlation allowed us to determine the surfactant/lipid molar ratios (Re) (inversely related to the C12-SO3 ability to be adsorbed on liposomes) and the bilayer/aqueous phase coefficients (K). The fact that the lowest values for Re were always reached after 10 s of incubation corroborates the rapid kinetics of the process. The decrease in the C12-SO3 partitioning (K) when the number of surfactant molecules exceeded 15000 was possibly due to the electrostatic repulsion between the free and the adsorbed monomers, which could hinder the incorporation of new monomers on the charged surface of liposomes.  相似文献   

13.
Glycoprotein Ia (GP Ia) is a relatively minor component of human blood platelets thought to be a receptor involved in collagen-induced platelet activation. However, some difficulties exist with the definition of this glycoprotein. The expression of GP Ia on resting (prostacyclin analogue-treated) and thrombin-activated platelets was compared by surface labeling with 125I-lactoperoxidase. Intact platelets or platelets solubilized in sodium dodecyl sulfate were labeled with periodate/[3H]NaBH4. Analysis on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed that GP Ia is very poorly labeled in resting platelets. After activation a new spot (GP Ia*) appears with the same relative molecular mass as GP Ia under reducing conditions. GP Ia and Ia* can be clearly separated by two-dimensional nonreduced/reduced gel electrophoresis. Therefore, two glycoproteins which have been termed GP Ia exist in platelets with similar molecular weight and pI under reducing conditions. One of these (GP Ia*) is only surface-labeled when platelets are activated, indicating that it is only exposed on the surface of activated platelets. Supernatant from activated platelets contains this glycoprotein as well as other granule components. This glycoprotein is missing in platelets from two patients with collagen-response defects.  相似文献   

14.
In this study, medium-chain fatty acid (MCFA) liposomes were prepared by the film ultrasonic dispersion, modified ethanol injection, and reverse-phase evaporate methods. The results indicated that the liposomes prepared by the thin-film ultrasonic dispersion method had a high entrapment efficiency of 82.7% and a good distribution in size diameters. The MCFA liposomes were freeze-dried and the optimal preparation conditions of freeze-drying were as follows: The cryoprotectants were mannitol and sucrose (1:1 w/w), the hydrated medium was distilled water, and the freeze-drying time was 48 hours. Under these conditions, the freeze-dried MCFA liposomes had a perfect appearance, a small particle size, and high encapsulation efficiency. The mean diameters were 251.1 and 265.3?nm, and the encapsulation efficiencies were 80.5 and 79.2% for freshly prepared and reconstituted liposomes, respectively.  相似文献   

15.
The influence of the temperature on the adsorption of monomeric and micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS) on phosphatidylcholine (PC) liposomes was investigated using the fluorescent probe 2-(p-toluidinyl)-naphthalene-6-sodium sulfonate (TNS). The number of adsorbed molecules was quantified by measuring changes in the electrostatic potential (Psi(o)) of the liposomes/probe during an incubation with SDS at varying temperatures. At low surfactant concentrations (from 0.05 to 0.25 mM), the increase in temperature reduced the number of surfactant molecules incorporated per vesicle regardless of the incubation time, whereas at high surfactant concentrations (from 0.50 to 1.0 mM) the incubation time has an opposite effect on this process. Thus, after 10s, the surfactant adsorption decreased with temperature, yet it increased progressively with time. The adsorption was linear with temperature below critical micellar concentration (CMC) of SDS and this linear tendency did not change above CMC. This suggests an adsorption of SDS monomers regardless of the surfactant concentration.  相似文献   

16.
The osmotic water outflow of large multilamellar liposomes containing 1-acid glycoprotein was measured at a temperature near the lipid's phase transition temperature. The liposomes were formed from a mixture of DPPC, cholesterol and glycoprotein in molar ratios 100:20:1, by continuous sucrose density gradient centrifugation. These liposomes captured 35% of the radiolabeled glycoprotein. The temperature-dependent experiments showed that near phase transition temperature the initial rate of water outflow increased drastically in comparison with glycoprotein free liposomes incubated in buffer containing glycoprotein. We suggested that eventual a channel mechanism may be involved due to spontaneous incorporation of glycoprotein into the bilayer.  相似文献   

17.
The glycoprotein (GP) IIb-IIIa complex was isolated from human platelet membranes and examined for glycoprotein stoichiometry and morphology. To determine the ratio of glycoproteins in the complex, the isolated glycoproteins were solubilized with sodium dodecyl sulfate and separated by high-performance liquid chromatography. Quantitative amino acid analysis of individual glycoproteins showed that the ratio of GP IIb to GP IIIa in the Ca2+-dependent complex was 0.93:1. Morphology was determined by electron microscopy of rotary-shadowed and negatively stained specimens. Individual complexes consisted of two domains: an oblong head of approximately 8 X 10 nm with two rodlike tails extending approximately 14-17 nm from one side of the head. Treatment of the isolated complex with EDTA resulted in the appearance of a mixture of oblong and filamentous structures, which could be separated by a sucrose gradient sedimentation in Triton X-100. As seen by rotary and unidirectional shadowing, GP IIb was a compact structure, approximately 8 X 10 nm in size. Isolated GP IIIa was more heterogeneous but was most often observed in an elongated form, varying in length from 20 to 30 nm and in width from 2 to 3 nm. By comparing these structures to that of the heterodimer complex, it was determined that the oblong domain was GP IIb and the rodlike tails were GP IIIa. Each milligram of isolated GP IIb-IIIa complex bound 0.30 mg of [3H]Triton X-100, indicating that the glycoprotein complex contained limited hydrophobic domains. Upon removal of detergent, GP IIb-IIIa complexes formed aggregates that sedimented in sucrose gradients as a diffuse peak ranging from 14 to 32 s. Examination of these aggregates by electron microscopy showed that they were composed of clusters or "rosettes" of 2 to 20 or more of the GP IIb-IIIa complexes. The orientation of these rosettes was such that the tails were joined in the center, with the head portions directed away from the interacting tails. It thus appears that the primary hydrophobic domains of the GP IIb-IIIa complex exist at the tips of the GP IIIa tails. Because the GP IIb-IIIa complex is an intrinsic membrane glycoprotein, these findings indicate a potential membrane attachment site for the GP IIb-IIIa complexes.  相似文献   

18.
《Free radical research》2013,47(9):1054-1063
Abstract

The antioxidant properties of the phenothiazine nucleus (PHT) associated with mitochondrial membranes and liposomes were investigated. PHT exhibited hydrophobic interaction with lipid bilayers, as shown by the quenching of excited states of 1-palmitoyl-2[10-pyran-1-yl)]-decanoyl-sn-glycero-3-phophocholine (PPDPC) incorporated in phosphatidylcholine/phosphatidylethanolamine/cardiolipin liposomes, observed even in high ionic strength; and by the spectral changes of PHT following the addition of mitochondrial membranes. Inserted into bilayers, 5 μM PHT was able to protect lipids and cytochrome c against pro-oxidant agents and exhibited spectral changes suggestive of oxidative modifications promoted by the trapping of the reactive species. In this regard, PHT exhibited the ability to scavenge DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical. PHT was also able to protect rat liver mitochondria against peroxide- and iron-induced oxidative damage and consequent swelling. At the concentration range in which the antioxidant properties were observed, PHT did not cause alterations in the membrane structure and function. This study contributes to the comprehension of the correlation structure and function of phenothiazines and antioxidant properties.  相似文献   

19.
The kinetics of osmotic water permeability in proteoliposomes containing 1-acid glycoprotein was investigated by means of stopped-flow spectrophotometry. A biphasic time-course of scattered light with time was registered. The rate constants calculated from fits to an exponential function in the first phase were proportional to the final medium osmolarity. The apparent second order rate constants Kapp (Osm-1 sec-1) were determined at different glycoprotein concentrations in the original mixture for preparation of proteoliposomes. The value of Kapp at lipid:glycoprotein weight ratio = 1 was plotted in Arrhenius coordinates. The calculated activation energy for water permeation through the lipid bilayer suggests that eventual channel mechanism may be involved due to the presence of glycoprotein molecule in the liposomes.  相似文献   

20.
Phosphatidylcholine (PC) alone or with phosphatidylethanolamine (PE) are sufficient for the reconstitution of Na+ channels in planar lipid bilayers. However, when Na+ channels were first reconstituted into liposomes using the freeze-thaw-sonication method, addition of acidic phospholipids, such as phosphatidylserine (PS), to the neutral phospholipids was necessary to obtain a significant toxin-modulated 22Na uptake. To further investigate the acidic phospholipid effect on reconstitution into liposomes, Na+ channels purified from Electrophorus electricus electrocytes were reconstituted into liposomes of different composition by freeze-thaw sonication and the effect of batrachotoxin and tetrodotoxin on the 22Na flux was measured. The results revealed that, under our experimental conditions, the presence of an acidic phospholipid was also necessary to obtain a significant neurotoxin-modulated 22Na influx. Though neurotoxin-modulated 22Na fluxes have been reported in proteoliposomes made with purified Na+ channels and PC alone, the 22Na fluxes were smaller than those found using lipid mixtures containing acidic phospholipids. Electron microscopy of negatively stained proteoliposomes prepared with PC, PC/PS (1:1 molar ratio), and PS revealed that the acidic phospholipid increases the size of the reconstituted proteoliposomes. The increment in size caused by the acidic phospholipid, due to the associated increase in internal volume for 22Na uptake and in area for Na+ channel incorporation, appears to be responsible for the large neurotoxin-modulated 22Na fluxes observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号