首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A hollow-fiber membrane bioreactor was used to separate trichloroethylene (TCE) from a gaseous waste stream with subsequent cometabolic biodegradation by a pure culture of Methylosinus trichosporium OB3b PP358. The two-stage bioreactor system was successfully operated for 20 days. PP358 was grown in a continuous-flow chemostat and circulated through the fiber lumen of a hollow-fiber membrane module (HFMM), while TCE contaminated air (141 to 191 microg/L) was pumped through the HFMM shell. Between 54% -84% TCE transfer and 92%-96% TCE cometabolism were obtained in the HFMM reactor loop. Short shell-residence times, 1.6 to 5.0 minutes, demonstrated quick throughput of TCE contaminated air. Best-fit computer modeling of the biological experiments estimated mass transfer coefficients between 2.0 x 10(-3) cm/min and 5.6 x 10(-3) cm/min. The average pseudo-first-order biodegradation rate constant for the biological experiments was 0.46 L/mg TSS/d. These results demonstrate that the hollow-fiber membrane bioreactor represents an attractive technology for the bioremediation of gaseous waste streams.  相似文献   

2.
This article reports on the biodegradation of trichloroethylene (TCE) in a hollow-fiber membrane biofilter. Air contaminated with TCE was passed through microporous hollow fibers while an oxygen-free nutrient solution was recirculated through the shell side of the membrane module. The biomass was attached to the outside surface of the microporous hollow fibers by initially supplying toluene in the gas phase that flows through the fibers. While studies on TCE biodegradation were conducted, there was no toluene present in the gas phase. At 20-ppmv inlet concentration of TCE and 36-s gas-phase residence time, based on total internal volume of the hollow fibers, 30% removal efficiency of TCE was attained. At higher air flow rates or lower gas-phase residence times, lower removal efficiencies were observed. During TCE degradation, the pH of the liquid phase on the shell side of the membrane module decreased due to release of chloride ions. A mathematical model was developed to describe the synchronous aerobic/anaerobic biodegradation of TCE. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
A soluble methane monooxygenase-constitutive mutant strain of Methylosinus trichosporium OB3b, strain PP358, was grown with methanol as the carbon source, and the kinetics of trichloroethylene (TCE) degradation were determined. PP358 exhibited high TCE degradation rates under both oxygen- and carbon-limiting conditions. The optimal pseudo first-order rate constant for TCE was comparable to the values measured for cells grown with methane. We found that growth under oxygen-limiting conditions results in increased accumulation of polyhydroxybutyrate, which in turn correlates with higher transformation capacities for TCE. It was also shown that methanol inhibits TCE degradation only at high concentrations. Thus, methanol-grown cultures of PP358 represent an efficient system for the biodegradation of chlorinated hydrocarbons.  相似文献   

4.
Gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) are emitted in the treatment of contaminated groundwaters with air stripping and/or the remediation of contaminated soils using vapor extraction techniques. This study investigated the application of biofiltration using cometabolic process to remediate gaseous TCE and PCE that are highly recalcitrant to biodegradation. The investigation was conducted using two specially built stainless steel columns, one for TCE and the other for PCE, packed with granular activated carbon (GAC) coated with phenol-oxidizing microorganisms at residence times of 1.5–7 min. Two activated carbon biofilters were fed with phenol at a specific concentration along with a nutrient solution to optimize the various catalyzed biochemical reactions. The removal efficiency of gaseous TCE was 100% at a residence time of 7 min and average inlet concentration of 85 ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4–7 min and average concentrations of 47–84 ppm. It was found that phenol fed to the biofilters was completely utilized by the phenol-oxidizing microorganisms, as an indirect indicator of the microorganisms growth in the biofilters, throughout the period of the biofilter operation. Transformation yields of gaseous TCE and PCE were about 8–48 g of TCE/g of phenol and 6–25 g of PCE/g of phenol, depending on different residence times. It was found that adsorption by GAC and absorption by the influent nutrient solution were a minor negligible mechanism for TCE and PCE removal in the activated carbon biofilters.  相似文献   

5.

The objectives of this study were to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the removal efficiency of TCE or PCE. For the enhanced biofiltration, a biodegradable nonionic surfactant was added to biofilters. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE.

The removal efficiency of gaseous TCE was 100% at a residence time of 7?min and its average inlet concentration of 85?ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4–7?min and its average concentrations of 47–84?ppm. It was found that adsorption by GAC and absorption by influent nutrient solution were a minor or negligible mechanism for TCE and PCE removal in the activated carbon biofilters. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5–50?mg/l. Surfactant concentrations of 5–15?mg/l were found to be an optimal dosage in the biofilter operation for avoiding significant residual in the effluent from biofilters.

  相似文献   

6.
The mutant methanotroph, Methylosinus trichosporium OB3b PP358, which constitutively expresses soluble methane monooxygenase (sMMO), was used to study the degradation kinetics of individual chlorinated solvents and binary solvent mixtures. Although sMMO's broad specificity permits a wide range of chlorinated solvents to be degraded, it creates the potential for competitive inhibition of degradation rates in mixtures because multiple chemicals are simultaneously available to the enzyme. To effectively design both ex-situ and in-situ groundwater bioremediation systems using strain PP358, kinetic parameters for chlorinated solvent degradation and accurate kinetic expressions to account for inhibition in mixtures are required. Toward this end, the degradation parameters for six prevalent chlorinated solvents and the verification of enzyme competition model for binary mixtures were the focus of this investigation. M. trichosporium OB3b PP358 degraded trichloroethylene (TCE), chloroform, cis-1,2-dichloroethylene (c-DCE), trans-1,2-dichloroethylene (t-DCE), and 1, 1-dichloroethylene (1,1-DCE) rapidly, with maximum substrate transformation rates of >20.8, 3.1, 9.5 24.8, and >7.5 mg/mg-day, respectively. 1,1,1-trichloroethane (TCA) was not significantly degraded. Half-saturation coefficients ranged from 1 to greater than 10 mg/L. Competition experiments were carried out to observe the effect of a second solvent on degradation rates and to verify the applicability of the Monod model adjusted for competitive inhibition. Binary mixtures of 0.3->0.5 mg/L TCE with up to 5 mg/L c-DCE and up to 7 mg/L 1,1,1-TCA were studied with 20 mM of formate and no growth substrate. No competition was observed at any of these concentrations. Additional competition experiments, using binary mixtures of t-DCE with TCE and t-DCE with c-DCE, were conducted at higher concentrations (i.e., 7-18 mg/L) and enzyme competition was observed. Predictions from a competitive inhibition model compared well with experimental data for these mixtures.  相似文献   

7.
Analytical expressions describing convective flow in a continuous arteriovenous hollow fiber hemofilter were developed. In the lumen of the hollow fiber membrane, existing analytical expressions were applied to describe velocity profiles and pressure. For flow in the shell (the extracapillary space separating the fibers), analytical expressions for the radial and axial velocity profiles and pressure distribution were derived by first finding the stream function. The expressions are based on a similarity solution. Previous analyses of ultrafiltration have either ignored osmotic pressure or assumed constant shell pressure. In this paper, the axial variation in lumen pressure, shell pressure, and osmotic pressure were accounted for. The predicted filtration rates agree well with the experimental results. This flow model is general enough to describe flow in hollow fiber membrane systems employed as bioreactors (e.g., for cell cultures and as bioartificial organs) and as separators (e.g., ultrafiltration and microfiltration) operating in the open-shell mode. The results were applied to determine the design of an optimally functioning bioartificial hemofilter for use ex vivo or in vivo.  相似文献   

8.
Model of oxygen transport limitations in hollow fiber bioreactors   总被引:4,自引:0,他引:4  
Axial and radial oxygen depletion are believed to be critical scale-limiting factors in the design of cell culture hollow fiber bioreactors. A mathematical analysis of oxygen depletion has been performed in order to develop effectiveness factor plots to aid in the scaling of hollow fiber bioreactors with cells immobilized in the shell-side. Considerations of the lumen mass transport resistances and the axial gradients were added to previous analyses of this immobilization geometry. An order of magnitude analysis was used to evaluate the impact of the shell-side convective fluxes on the oxygen transport. A modified Thiele modulus and a lumen and membrane resistance factor have been derived from the model. Use of these terms in the effectiveness factor plots results in a considerable simplification of the presentation and use of the model. Design criteria such as fiber dimensions and spacing, reactor lengths, and recycle flow rates can be selected using these plots. Model predictions of the oxygen limitations were compared to experimental measurements of the axial cell distributions in a severely oxygen limited hollow fiber bioreactor. Despite considerable uncertainty in our parameters and nonidealities in hollow fiber geometry, the cell distribution correlated well with the modeling results.  相似文献   

9.
Mitigation strategies can be implemented to decrease chlorinated and non‐chlorinated organic exposures to biota of aquatic receiving systems thereby reducing associated risks. In this work, we investigated the concept of coupling a physical/chemical reactor (i.e. a cavitation reactor) with a biological reactor (i.e. a constructed wetland) in an effort to efficiently transform PCE, TCE, and petroleum in freshwater into non‐toxic chemical forms or concentrations. Rates of TCE degradation due to cavitation ranged from 0.010 to 0.026 min‐1 with corresponding half‐lives of 69 to 27 min. Compared to controls, degradation of petroleum in water by cavitation was not detected in these experiments. After treatment in anaerobic wetland reactors, TCE and PCE decreased by more than 99 % under two flow regimes (5‐d and 20‐d HRT). In reciprocating constructed wetland reactors receiving petroleum, mean COD, BOD5, and total Zn decreased by 90.0, 88.8, and 86.8 %, respectively, in wetland outflows compared to the initial conditions (96‐h HRT). Percent survival (96‐h) of D. magna and P. promelas increased from zero percent in initial conditions to 80.1 (± 18.9) and 80.0 (± 21.4) %, respectively, after treatment in the constructed wetland reactors. The experimental results obtained in the laboratory‐scale set‐up and the theoretical model for the hybrid reactor concept will be used to obtain the intrinsic kinetic coefficients for the appropriate reactors. This kinetic information will be used to scale‐up the hybrid reactor model concept for the same level of pollutant removal.  相似文献   

10.
This study focused on the capacity of finished compost, often used as packing material in biofiltration units, to support microbial biodegradation of trichloroethylene (TCE). Finished compost was enriched with methane or propane (10% head space) to stimulate cometabolic biodegradation of gaseous TCE. Successful hydrocarbon enrichment, as indicated by rapid depletion of hydrocarbon gas and measurable growth of hydrocarbon-utilizing micro-organisms, occurred within a week. Within batch reactor flasks, approximately 75% of head space TCE (1–40 ppmv) was rapidly sorbed onto compost material. Up to 99% of the remaining head space TCE was removed via biodegradation in compost enriched with either hydrocarbon. Hydrocarbon enrichment with methane or propane corresponded to 10-fold increases in methanotrophic or propanotrophic populations, respectively. Based on growth assessment under different nutritional regimes, there appeared to be complex metabolic interactions within the microbial community in enriched compost. Five separate bacterial cultures were derived from the hydrocarbon-enriched compost and assayed for the ability to degrade TCE.  相似文献   

11.
This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar (8 to 10 nmol day-1), but [14C]TCE mineralization (biodegradation to 14CO2) by ammonia oxidizers was significantly greater than that by methanotrophs (63 versus 53%). Under psychrophilic conditions, [14C]TCE mineralization in flask systems by ammonia oxidizers and methanotrophs was reduced to 12 and 5%, respectively. In mesophilic batch exchange columns, average TCE biodegradation rates for methanotrophs (900 nmol liter-1 day-1) were not significantly different from those of ammonia oxidizers (775 nmol liter-1 day-1). Psychrophilic TCE biodegradation rates in the columns were similar with both biostimulants and averaged 145 nmol liter-1 day-1. Methanotroph biostimulation was most adversely affected by low temperatures. At 12 degrees C, the biodegradation efficiencies (TCE degradation normalized to microbial activity) of methanotrophs and ammonia oxidizers decreased by factors of 2.6 and 1.6, respectively, relative to their biodegradation efficiencies at 24 degrees C. Collectively, these experiments demonstrated that in situ bioremediation of TCE is feasible at the psychrophilic temperatures common in surficial aquifers in the northern United States and that for such applications biostimulation of ammonia oxidizers could be more effective than has been previously reported.  相似文献   

12.
The use of ultrafiltration as a concentration method to recover viruses from environmental waters was investigated. Two ultrafiltration systems (hollow fiber and tangential flow) in a large- (100 L) and small-scale (2 L) configuration were able to recover greater than 50% of multiple viruses (bacteriophage PP7 and T1 and poliovirus type 2) from varying water turbidities (10-157 nephelometric turbidity units (NTU)) simultaneously. Mean recoveries (n = 3) in ground and surface water by the large-scale hollow fiber ultrafiltration system (100 L) were comparable to recoveries observed in the small-scale system (2 L). Recovery of seeded viruses in highly turbid waters from small-scale tangential flow (2 L) (screen and open channel) and hollow fiber ultrafilters (2 L) (small pilot) were greater than 70%. Clogging occurred in the hollow fiber pencil module and when particulate concentrations exceeded 1.6 g/L and 5.5 g/L (dry mass) in the screen and open channel filters, respectively. The small pilot module was able to filter all concentrates without clogging. The small pilot hollow fiber ultrafilter was used to test recovery of seeded viruses from surface waters from different geographical regions in 10-L volumes. Recoveries >70% were observed from all locations.  相似文献   

13.
The bioartificial pancreas, in which transplanted pancreatic tissue or isolated cells are cultured on a hollow fiber membrane, is an attractive approach to restore physiologic insulin delivery in the treatment of diabetes. Insulin response in prototype devices has been unacceptable due to the large mass transport limitations associated with the membrane and the surrounding shell region. Although available theoretical analyses provide some insight into the combined effects of transport and reaction in the bioartificial pancreas, they cannot quantitatively account for the effects of convective recirculation flow, complex intrinsic insulin secretory kinetics, and non-uniform distribution of pancreatic cells. We have developed a detailed model for glucose and insulin transport and insulin secretion in the hollow fiber bioartificial pancreas based on the solution of the mass and momentum conservation equations describing flow and transport in the lumen, matrix, and shell. Model predictions are in good agreement with literature data obtained in a hollow fiber device with minimal radial convective flow. Although no quantitative data are available for a device with significant radial convection, model simulations demonstrate that convective recirculation flow can dramatically improve insulin response, allowing the device to accurately capture the bi-phasic insulin secretion characteristic of the normal physiologic response. Results provide fundamental insights into the coupling between kinetics and transport in the hollow fiber system and a rational basis for the design of clinical devices.  相似文献   

14.
The wide range of redox conditions and diversity of microbial populations in organic-rich wetland sediments could enhance biodegradation of chlorinated solvents. To evaluate potential biodegradation rates of trichloroethylene (TCE) and its anaerobic daughter products (cis-1,2-dichloroethylene; trans-1,2-dichloroethylene; and vinyl chloride), laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a TCE contaminant plume. Under methanogenic conditions, biodegradation rates of TCE were extremely rapid at 0.30 to 0.37 d-1 (half-life of about 2 days). Although the TCE biodegradation rate was slower under sulfate-reducing conditions (0.032 d-1) than under methanogenic conditions, the rate was still two orders of magnitude higher than those reported in the literature for microcosms constructed with sandy aquifer sediments. In the aerobic microcosm experiments, biodegradation occurred only if methane consumption occurred, indicating that methanotrophs were involved. Comparison of laboratory-measured rates indicates that production of the 1,2-dichloroethylene isomers and vinyl chloride by anaerobic TCE biodegradation could be balanced by their consumption through aerobic degradation where methanotrophs are active in wetland sediment. TCE degradation rates estimated using field data (0.009 to 0.016 d-1) agree with the laboratory-measured rates within a factor of 3 to 22, supporting the feasibility of natural attenuation as a remediation method for contaminated groundwater discharging in this wetland and other similar environments.  相似文献   

15.
BACKGROUND: Previous studies suggest that trichloroethylene (TCE) is a selective cardiac teratogen. We tested the hypothesis that the odds of maternal residence close to TCE-emitting sites would be greater among infants with congenital heart defects (CHDs) than among infants without CHDs. METHODS: We conducted a case-control study of 4025 infants, identified from hospital and birth records, born from 1997 to 1999 to Milwaukee, Wisconsin mothers. A geographic information system was used to calculate distances between maternal residences and TCE sites. We used classification tree analysis to determine appropriate values by which to dichotomously categorize mothers by TCE exposure (exposed: residence within 1.32 miles of at least one TCE site) and age (older: >/=38 years), and logistic regression to test for CHD risk factors. RESULTS: The proportion of mothers who were both older and had presumed TCE exposure was more than six-fold greater among case infants than among control infants (3.3% [8/245] versus 0.5% [19/3780]). When adjusted for other variables, CHD risk was over three-fold greater among infants of older, exposed mothers compared to infants of older, nonexposed mothers (adjusted OR, 3.2; 95% CI, 1.2-8.7). Older maternal age, alcohol use, chronic hypertension, and preexisting diabetes were each associated with CHDs (adjusted ORs, 1.9, 2.1, 2.8, 4.1; 95% CIs, 1.1-3.5, 1.1-4.2, 1.2-6.7, 1.5-11.2, respectively), but residence close to TCE sites alone was not. CONCLUSIONS: Our findings suggest that maternal age and TCE exposure interact to increase CHD risk, although the mechanism by which this occurs is unknown. A prospective study is underway to confirm this finding.  相似文献   

16.
Physical and biological removal of diesel oil from contaminated soil was studied in a baffled roller bioreactor. Initially, the effects of four factors (soil loading, temperature, pH, and surfactant) on physical removal of diesel oil were investigated. Only the presence of a surfactant (sodium dodecyl sulfate [SDS]) demonstrated a significant effect on diesel oil removal. Diesel oil removal efficiency was increased from 32.0% to 63.9% in the presence of 100 mg/L SDS. Using a microbial culture enriched from contaminated soil, biological treatment of diesel oil polluted soil under different soil loadings (15% to 50%), different diesel oil concentrations (1 to 50 g/L), and different types of soil (sand, silt, and clay) was then investigated in the baffled roller bioreactor. Biodegradation consisted of both fast and slow stages for degradation of light and heavy compounds, respectively. All biodegradation experiments demonstrated significant decreases in diesel oil concentrations (88.3% in 14 days for initial diesel oil concentrations of 1000 mg/L and a wide range of soil loadings). The presence of silty or sandy soils enhanced the biodegradation rate compared to the control bioreactor (without soil). The sandy soil loading had no effect on the biodegradation results. Using the enriched culture, the baffled roller bioreactor was able to biodegrade high diesel concentrations (up to 50 g/L) with biodegradation rates of 112.2 and 39.3 mg/L· h during fast and slow stages, respectively.  相似文献   

17.
Most Trichloroethylene (TCE) biodegradation reports refer to methanogenic conditions, however, in this work, enhanced sulfidogenesis and TCE biodegradation were achieved in an upflow anaerobic sludge blanket (UASB) reactor in which a completely sulfidogenic sludge, from hydrothermal vents sediments, was developed. The work was divided in three stages, (i) sludge development and sulfate reducing activity (SRA) evaluation, (ii) TCE biodegradation and (iii) SRA evaluation after TCE biodegradation. For (i) SR was 98 ± 0.1%, 84% as sulfide (H2S, 1200 ± 28 mg/L), sulfate reducing activity (SRA) was 188 ± 50 mg COD H2S/g VSS*d. For (ii) The reactor reached 74% of TCE removal, concentrations of vinyl chloride of 16 ± 0.3 μM (5% of the TCE added) and ethene 202 ± 81 μM (67% of the TCE added), SRA of 161 ± 7 mg COD H2S/g VSS*d, 68% of sulfide (H2S) production and 93% of COD removal. For (iii) SRA was of 248 ± 22 mg COD H2S/g VSS*d demonstrating no adverse effects due to TCE.Among the genera of the microorganisms identified in the sludge during TCE biodegradation were: Dehalobacter, Desulfotomaculum, Sulfospirillum, Desulfitobacterium, Desulfovibrio and Clostridium. To the best of our knowledge, this is the first report using a sulfidogenic UASB reactor to biodegrade TCE. The overall conclusions of this work are that the reactor is efficient on both, sulfate and TCE biodegradation and it could be used to decontaminate wastewater containing organic solvents and relatively high concentrations of sulfate.  相似文献   

18.
We designed, built or 3D printed, and screened tubular reactors that minimize axial dispersion to serve as incubation chambers for continuous virus inactivation of biological products. Empirical residence time distribution data were used to derive each tubular design's volume equivalent to a theoretical plate (VETP) values at a various process flow rates. One design, the Jig in a Box (JIB), yielded the lowest VETP, indicating optimal radial mixing and minimal axial dispersion. A minimum residence time (MRT) approach was employed, where the MRT is the minimum time the product spends in the tubular reactor. This incubation time is typically 60 minutes in a batch process. We provide recommendations for combinations of flow rates and device dimensions for operation of the JIB connected in series that will meet a 60‐min MRT. The results show that under a wide range of flow rates and corresponding volumes, it takes 75 ± 3 min for 99% of the product to exit the reactor while meeting the 60‐min MRT criterion and fulfilling the constraint of keeping a differential pressure drop under 5 psi. Under these conditions, the VETP increases slightly from 3 to 5 mL though the number of theoretical plates stays constant at about 1326 ± 88. We also demonstrated that the final design volume was only 6% ± 1% larger than the ideal plug flow volume. Using such a device would enable continuous viral inactivation in a truly continuous process or in the effluent of a batch chromatography column. Viral inactivation studies would be required to validate such a design. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:954–965, 2017  相似文献   

19.
Soil column and serum bottle microcosm experiments were conducted to investigate the potential for in situ anaerobic bioremediation of trichloroethy lene (TCE) and dichloromethane (DCM) at the Pinellas site near Largo, Florida. Soil columns with continuous groundwater recycle were used to evaluate treatment with complex nutrients (casamino acids, methanol, lactate, sulfate); benzoate and sulfate; and methanol. The complex nutrients drove microbial dechlorination of TCE to ethene, whereas the benzoate/sulfate and methanol supported microbial dechlorination of TCE only to cis-1 ,2-dichloroethylene (cDCE). Microbial sulfate depletion in the benzoate/sulfate column allowed further dechlorination of cDCE to vinyl chloride. Serum bottle microcosms were used to investigate TCE dechlorination and DCM biodegradation in Pinellas soil slurries bioaugmented with liquid from the soil columns possessing TCE-dechlorinating activity and DCM biodegradation by indigenous microorganisms. Bioaugmented soil microcosms showed immediate TCE dechlorination in the microcosms with methanol or complex nutrients, but no dechlorination in the benzoate/sulfate microcosm. DCM biodegradation by indigenous microorganisms occurred in soil microcosms amended with either benzoate/sulfate or methanol, but not with complex nutrients. Bioaugmentation stimulated DCM biodegradation in both complex nutrient and methanol-amended microcosms, but appeared to inhibit DCM biodegradation in benzoate/sulfate-amended microcosms. TCE dechlorination occurred before DCM biodegradation in bioaugmented microcosms when both compounds were present.  相似文献   

20.
A radial flow hollow fiber bioreactor has been developed that maximizes the utilization of fiber surface for cell growth while eliminating nutrient and metabolic gradients inherent in conventional hollow fiber cartridges. The reactor consists of a central flow distributor tube surrounded by an annular bed of hollow fibers. The central flow distributor tube ensures an axially uniform radial convective flow of nutrients across the fiber bed. Cells attach and proliferate on the outer surface of the fibers. The fibers are pretreated with polylysine to facilitate cell attachment and long-term maintenance of tissuelike densities of cell mass. A mixture of air and CO(2) is fed through the tube side of the hollow fibers, ensuring direct oxygenation of the cells and maintenance of pH. Spent medium diffuses across the cell layer into the tube side of the fibers and is convected away along with the spent gas stream. The bioreactor was run as a recycle reactor to permit maximum utilization of nutrient medium. A bioreactor with a membrane surface area of 1150 cm(2) was developed and H1 cells were grown to a density of 7.3 x 10(6) cells/cm(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号