首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli has four [NiFe]-hydrogenases (Hyd); three of these, Hyd-1, Hyd-2 and Hyd-3 have been characterized well. In this study the requirement for the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases Hyd-1 and Hyd-2 was examined. During fermentative growth on glucose at pH 7.5 an E. coli F0F1-ATP synthase mutant (DK8) lacked hydrogenase activity. At pH 5.5 hydrogenase activity was only 20% that of the wild type. Using in-gel activity staining, it could be demonstrated that both Hyd-1 and Hyd-2 were essentially inactive at these pHs, indicating that the residual activity at pH 5.5 was due to the hydrogen-evolving Hyd-3 enzyme. During fermentative growth in the presence of glycerol, hydrogenase activity in the mutant was highest at pH 7.5 attaining a value of 0.76 U/mg, or ~50% of wild type activity, and Hyd-2 was only partially active at this pH, while Hyd-1 was inactive. Essentially no hydrogenase activity was measured at pH 5.5 during growth with glycerol. At this pH the mutant had a hydrogenase activity that was maximally only ~10% of wild type activity with either carbon substrate but a weak activity of both Hyd-1 and Hyd-2 could be detected. Taken together, these results demonstrate for the first time that the activity of the hydrogen-oxidizing hydrogenases in E. coli depends on an active F0F1-ATP synthase during growth at high and low pH.  相似文献   

2.
Potassium ion pool was studied in glycolyzing Enterococcus hirae, grown at high or low alkaline pH (pH 9.5 and 8.0, respectively). Energy-dependent increase of K+ pool was lower for the wild-type cells, grown at pH 9.5, than that for the cells grown at pH 8.0. It was inhibited by N,N′-dicyclohexylcarbodiimide (DCCD). The stoichiometry of DCCD-inhibited K+ influx to DCCD-inhibited H+ efflux for the wild-type cells, grown at pH 9.5 or 8.0, was fixed for different K+ external activity. DCCD-inhibited ATPase activity of membrane vesicles was significantly stimulated by K+ for the wild-type cells grown at pH 9.5, and required K+ for the wild-type cells grown at pH 8.0, while the levels of α and β subunits of the F1 and b subunit of the F0 were lower for the cells grown at pH 9.5 than that for the cells grown at pH 8.0. Such an ATPase activity was residual in membrane vesicles from the atpD mutant with a nonfunctional F0F1. ATPase activity of membrane vesicles from the mutant with defect in Na+-ATPase was higher for the cells grown at pH 9.5 than that for the cells grown at pH 8.0, and was inhibited by DCCD. An energy-dependent increase of K+ pool in this bacterium, grown at a high or low alkaline pH, is assumed to occur through a K+ uptaking system, most probably the Trk. The latter functions in a closed relationship with the H+-translocating ATPase F0F1. Received: 30 June 1997 / Accepted: 4 August 1997  相似文献   

3.
Based on published evidence that cation transport in mitochondria is not significantly dependent on a membrane potential, it is suggested that the process of mitochondrial cation transport may be nonelectrogenic. These experiments focused on the possibility that K+ flux into rat liver mitochondria may be directly coupled, via an energy-linked carrier mechanism, to OH? influx or H+ efflux. The dependence of the unidirectional K+ influx on the external K+ concentration indicates involvement of a saturable mechanism. Increasing the external pH from 7.0 to 8.0 increases the apparent Vmax of the K+ influx without significantly altering the apparent Km for K+. The pH dependence is greater in the presence of N-ethyl maleimide, a known inhibitor of the mitochondrial Pi/OH? exchange mechanism. N-Ethyl maleimide decreases the apparent Vmax at pH 7.0 and increases it at pH 8.0. Evidence indicates that both N-ethyl maleimide and a high external Pi concentration may stimulate the K+ influx at alkaline external pH (8.0) by preventing net exchanges between endogenous Pi and external OH?. An apparent first-order dependence of the K+ influx on the external OH? concentration is observed in the presence of N-ethyl maleimide. These results are consistent with a possible role of external OH? as a cosubstrate of the K+ transport mechanism.  相似文献   

4.
The stability and specific activity of endo-β-1,4-glucanase III from Trichoderma reesei QM9414 was enhanced, and the expression efficiency of its encoding gene, egl3, was optimized by directed evolution using error-prone PCR and activity screening in Escherichia coli RosettaBlue (DE3) pLacI as a host. Relationship between increase in yield of active enzyme in the clones and improvement in its stability was observed among the mutants obtained in the present study. The clone harboring the best mutant 2R4 (G41E/T110P/K173M/Y195F/P201S/N218I) selected in via second-round mutagenesis after optimal recombinating of first-round mutations produced 130-fold higher amount of mutant enzyme than the transformant with wild-type EG III. Mutant 2R4 produced by the clone showed broad pH stability (4.4–8.8) and thermotolerance (entirely active at 55°C for 30 min) compared with those of the wild-type EG III (pH stability, 4.4–5.2; thermostability, inactive at 55°C for 30 min). k cat of 2R4 against carboxymethyl-cellulose was about 1.4-fold higher than that of the wild type, though the K m became twice of that of the wild type.  相似文献   

5.
1-Hydroxycyclopropane carboxylic acid phosphate has been synthesized from diethyl succinate by acyloin condensation followed by ring contraction and phosphorylation. This compound is a potent competitive inhibitor of enzymes utilizing phosphoenolpyruvate. For phosphoenolpyruvate from maize, Ki = 7.3 μM at pH 8.0 in the presence of Mg2+. For pyruvate kinase, Ki = 2.0 mM at pH 7.0. For enolase, Ki = 8.0 μM at pH 8.0. In each case, this compound is a substantially better inhibitor than the commonly used phosphoenolpyruvate analogs phosphoglycolate and phospholactate, presumably because of the similarity in geometric and electronic structure between the cyclopropane compound and phosphoenolpyruvate.  相似文献   

6.
Sodium proton antiporters are essential enzymes that catalyze the exchange of sodium ions for protons across biological membranes. The crystal structure of NhaA has provided a basis to explore the mechanism of ion exchange and its unique regulation by pH. Here, the mechanism of the pH activation of the antiporter is investigated through functional and computational studies of several variants with mutations in the ion‐binding site (D163, D164). The most significant difference found computationally between the wild type antiporter and the active site variants, D163E and D164N, are low pKa values of Glu78 making them insensitive to pH. Although in the variant D163N the pKa of Glu78 is comparable to the physiological one, this variant cannot demonstrate the long‐range electrostatic effect of Glu78 on the pH‐dependent structural reorganization of trans‐membrane helix X and, hence, is proposed to be inactive. In marked contrast, variant D164E remains sensitive to pH and can be activated by alkaline pH shift. Remarkably, as expected computationally and discovered here biochemically, D164E is viable and active in Na+/H+ exchange albeit with increased apparent KM. Our results unravel the unique electrostatic network of NhaA that connect the coupled clusters of the “pH sensor” with the binding site, which is crucial for pH activation of NhaA. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Kinetics of the reactions of purine nucleoside phosphorylases (PNP) from E. coli (PNP-I, the product of the deoD gene) and human erythrocytes with their natural substrates guanosine (Guo), inosine (Ino), a substrate analogue N(7)-methylguanosine (m7Guo), and orthophosphate (Pi, natural cosubstrate) and its thiophosphate analogue (SPi), found to be a weak cosubstrate, have been studied in the pH range 5–8. In this pH range Guo and Ino exist predominantly in the neutral forms (pKa 9.2 and 8.8); m7Guo consists of an equilibrium mixture of the cationic and zwitterionic forms (pKa 7.0); and Pi and SPi exhibit equilibria between monoanionic and dianionic forms (pKa 6.7 and 5.4, respectively). The phosphorolysis of m7Guo (at saturated concentration) with both enzymes exhibits Michaelis kinetics with SPi, independently of pH. With Pi, the human enzyme shows Michaelis kinetics only at pH ∼5. However, in the pH range 5–8 for the bacterial enzyme, and 6–8 for the human enzyme, enzyme kinetics with Pi are best described by a model with high- and low-affinity states of the enzymes, denoted as enzyme-substrate complexes with one or two active sites occupied by Pi, characterized by two sets of enzyme-substrate dissociation constants (apparent Michaelis constants, K m1 and K m2) and apparent maximal velocities (V max1 and V max2). Their values, obtained from non-linear least-squares fittings of the Adair equation, were typical for negative cooperativity of both substrate binding (K m1 < K m2) and enzyme kinetics (V max1/K m1 > V max2/K m2). Comparison of the pH-dependence of the substrate properties of Pi versus SPi points to both monoanionic and dianionic forms of Pi as substrates, with a marked preference for the dianionic species in the pH range 5–8, where the population of the Pi dianion varies from 2 to 95%, reflected by enzyme efficiency three orders of magnitude higher at pH 8 than that at pH 5. This is accompanied by an increase in negative cooperativity, characterized by a decrease in the Hill coefficient from n H ∼1 to n H ∼0.7 for Guo with the human enzyme, and to n H ∼0.7 and 0.5 for m7Guo with the E. coli and human enzymes, respectively. Possible mechanisms of cooperativity are proposed. Attention is drawn to the substrate properties of SPi in relation to its structure.  相似文献   

8.
Human 20α-hydroxysteroid dehydrogenase (AKR1C1) is an important drug target due to its role in the development of lung and endometrial cancers, premature birth and neuronal disorders. We report the crystal structure of AKR1C1 complexed with the first structure-based designed inhibitor 3-chloro-5-phenylsalicylic acid (Ki = 0.86 nM) bound in the active site. The binding of 3-chloro-5-phenylsalicylic acid to AKR1C1 resulted in a conformational change in the side chain of Phe311 to accommodate the bulky phenyl ring substituent at the 5-position of the inhibitor. The contributions of the nonconserved residues Leu54, Leu306, Leu308 and Phe311 to the binding were further investigated by site-directed mutagenesis, and the effects of the mutations on the Ki value were determined. The Leu54Val and Leu306Ala mutations resulted in 6- and 81-fold increases, respectively, in Ki values compared to the wild-type enzyme, while the remaining mutations had little or no effects.  相似文献   

9.
《BBA》1987,893(2):275-288
The membrane-bound ATP synthase from chloroplasts can occur in different redox and activation states. In the absence of reductants the enzyme usually is oxidized and inactive, Eoxi. Illumination in the presence of dithiothreitol leads to an active, reduced enzyme, Ereda. If this form is stored in the dark in the presence of dithiothreitol an inactive, reduced enzyme Eredi is formed. The rates of ATP synthesis and ATP hydrolysis catalyzed by the different enzyme species are measured as a function of ΔpH (Δψ = 0 mV). The ΔpH was generated with an acid-base transition using a rapid-mixing quenched flow apparatus. The following results were obtained. (1) The oxidized ATP synthase catalyzes high rates of ATP synthesis, voxmax = 400 ATP per CF0F1 per s. The half-maximal rate is obtained at ΔpH = 3.4. (2) The active, reduced ATP synthase catalyzes high rates of ATP synthesis, vredmax = 400 ATP per CF0F1 per s. The half-maximal rate is obtained at ΔpH = 2.7. It catalyzes also high rates of ATP hydrolysis vredmax = −90 ATP per CF0F per s at ΔpH = 0. (3) The inactive species (both oxidized and reduced) catalyze neither ATP synthesis nor ATP hydrolysis. The activation/inactivation of the reduced enzyme is completely reversible. (4) The activation of the reduced, inactive enzyme is measured as a function of ΔpH by measuring the rate of ATP hydrolysis catalyzed by the active species. Half-maximal activation is observed at ΔpH = 2.2. (5) On the basis of these results a reaction scheme is proposed relating the redox reaction, the activation and the catalytic reaction of the chloroplast ATP synthase.  相似文献   

10.
This report addresses the functional role of His residues in the proton-coupled folate transporter (PCFT; SLC46A1), which mediates intestinal folate absorption. Of ten His residues, only H247A and H281A mutations altered function. The folic acid influx Kt at pH 5.5 for H247A was ↓8.4-fold. Although wild type (WT)-PCFT Ki values varied among the folates, Ki values were much lower and comparable for H247-A, -R, -Q, or -E mutants. Homology modeling localized His247 to the large loop separating transmembrane domains 6 and 7 at the cytoplasmic entrance of the translocation pathway in hydrogen-bond distance to Ser172. The folic acid influx Kt for S172A-PCFT was decreased similar to H247A. His281 faces the extracellular region in the seventh transmembrane domain. H281A-PCFT results in loss-of-function due to ∼12-fold↑ in the folic acid influx Kt. When the pH was decreased from 5.5 to 4.5, the WT-PCFT folic acid influx Kt was unchanged, but the Kt decreased 4-fold for H281A. In electrophysiological studies in Xenopus oocytes, both WT-PCFT- and H281A-PCFT-mediated folic acid uptake produced current and acidification, and both exhibited a low level of folate-independent proton transport (slippage). Slippage was markedly increased for the H247A-PCFT mutant. The data suggest that disruption of the His247 to Ser172 interaction results in a PCFT conformational alteration causing a loss of selectivity, increased substrate access to a high affinity binding pocket, and proton transport in the absence of a folate gradient. The His281 residue is not essential for proton coupling but plays an important role in PCFT protonation, which, in turn, augments folate binding to the carrier.  相似文献   

11.
Kinetic properties of homogeneous preparations of pig kidney and pig muscle pyruvate kinases (EC 2.7.1.40) were studied. Both isozymes showed a hyperbolic relationship to ADP with an apparent Km of 0.3 mm. K+ and Mg2+ were necessary for the activity of both isozymes, and their dependences on these cations were similar. The muscle isozyme expressed Michaelis-Menten type of kinetics with respect to phosphoenolpyruvate, and the apparent Km was the same (0.03 mm) from pH 5.5 to pH 8.0. In contrast, the dependence on phosphoenolpyruvate changed with pH for the kidney isozyme. It showed similar properties to the muscle isozyme at pH 5.5–7.0 (apparent Km of 0.08 mm), while two apparent Km values for this substrate were present at pH 7.5–8.0, one low (0.1 mm) and one high (0.3–0.6 mm). At pH 7.5, fructose 1,6-bisphosphate converted the kidney isozyme to a kinetical form where only the lower apparent Km for phosphoenolpyruvate was detected. On the other hand, in the presence of alanine or phenylalanine the kidney pyruvate kinase showed only the higher Km for this substrate. At low phosphoenolpyruvate levels both isozymes were inhibited by phenylalanine, and half-maximal inhibition was found at 0.3 and 2.2 mm for the kidney and muscle isozymes, respectively. At a 5 mm concentration of the substrate only the kidney isozyme was inhibited, the apparent Ki being the same. Alanine inhibited the kidney isozyme (apparent Ki at 0.3 mm, irrespective of substrate concentration). No effect was seen on the muscle isozyme. Fructose 1,6-bisphosphate was an activator of the kidney isozyme at phosphoenolpyruvate concentrations below 1.0 mm It also counteracted the inhibition by alanine or phenylalanine of this isozyme. ATP inhibited both isozymes, and this inhibition was not counteracted by fructose 1,6-bisphosphate. The kidney isozyme showed both a high and a low apparent Km for phosphoenolpyruvate in the presence of ATP. The influence of the effectors on the activity of both isozymes varied markedly with pH, except for the action of ATP. At low substrate concentrations, however, the inhibitor action of ATP on the muscle enzyme was diminished around pH 7.5, in contrast to higher or lower pH values. Alanine or phenylalanine were more effective as inhibitors at higher pH values, and fructose 1,6-bisphosphate stimulated the kidney isozyme only at pH levels above pH 6.5. The influence of activators and inhibitors on the regulation of the kidney and muscle pyruvate kinases is discussed.  相似文献   

12.
Three site-specific mutations were performed in two regions of a sialidase gene fromClostridium perfringens which are known to be conserved in bacterial sialidases. The mutant enzymes were expressed inEscherichia coli and, when measured with MU-Neu5Ac as substrate, exhibited variations in enzymatic properties compared with the wild-type enzyme. The conservative substitution of Arg 37 by Lys, located in a short conserved region upstream from the four repeated sequences common in bacterial sialidase genes, was of special interest, asK M andV max, as well asK i measured with Neu5Ac2en, were dramatically changed. These data suggest that this residue may be involved in substrate binding. In addition to its low activity, this mutant enzyme has a lower temperature optimum and is active over a more limited pH range. This mutation also prevents the binding of an antibody able to inhibit the wild-type sialidase. The other mutations, located in one of the consensus sequences, were of lower influence on enzyme activity and recognition by antibodies.  相似文献   

13.
Philip G. Koga  Richard L. Cross 《BBA》1982,679(2):269-278
1. Soluble beef-heart mitochondrial ATPase (F1) was incubated with [3H]pyridoxal 5′-phosphate and the Schiffbase complex formed was reduced with sodium borohydride. Spectral measurements indicate that lysine residues are modified and gel electrophoresis in the presence of detergent shows the tritium label to be associated with the two largest subunits, α and β. 2. In the absence of protecting ligands, the loss of ATP hydrolysis activity is linearly dependent on the level of pyridoxylation with complete inactivation correlating to 10 mol pyridoxamine phosphate incorporated per mol enzyme. Partial inactivation of F1 with pyridoxal phosphate has no effect on either the Km for ATP or the ability of bicarbonate to stimulate residual hydrolysis activity, suggesting a mixed population of fully active and fully inactive enzyme. 3. In the presence of excess magnesium, the addition of ADP or ATP, but not AMP, decreases the rate and extent of modification of F1 by pyridoxal phosphate. The non-hydrolyzable ATP analog, 5′-adenylyl-β, γ-imidodiphosphate, is particularly effective in protecting F1 against both modification and inactivation. Efrapeptin and Pi have no effect on the modification reaction. 4. Prior modification of F1 with pyridoxal phosphate decreases the number of exchangeable nucleotide binding sites by one. However, pyridoxylation of F1 is ineffective in displacing endogenous nucleotides bound at non-catalytic sites and does not affect the stoichiometry of Pi binding. 5. The ability of nucleotides to protect against modification and inactivation by pyridoxal phosphate and the loss of one exchangeable nucleotide site with the pyridoxylation of F1 suggest the presence of a positively charged lysine residue at the catalytic site of an enzyme that binds two negatively charged substrates.  相似文献   

14.
Archaeoglobus fulgidus, a sulfate-reducing Archaeon with a growth temperature optimum of 83°C, uses the 5-deazaflavin coenzyme F420 rather than pyridine nucleotides in catabolic redox processes. The organism does, however, require reduced pyridine nuclcotides for biosynthetic purposes. We describe here that the Archaeon contains a coenzyme F420-dependent NADP reductase which links anabolism to catabolism. The highly thermostable enzyme was purfied 3600-fold by affinity chromatography to apparent homogeneity in a 60% yield. The native enzyme with an apparent molecular mass of 55 kDa was composed of only one type of subunit of apparent molecular mass of 28 kDa. Spectroscopic analysis of the enzyme did not reveal the presence of any chromophoric prosthetic group. The purified enzyme catalyzed the reversible reduction of NADP (apparent K M 40 M) with reduced F420 (apparent K M 20M) with a specific activity of 660 U/mg (apparent V max) at pH 8.0 (pH optimum) and 80°C (temperature optimum). It was specific for both coenzyme F420 and NADP. Sterochemical investigations showed that the F420-dependent NADP reductase was Si face specific with respect to C5 of F420 and Si face specific with respect to C4 of NADP.Abbreviations F420 coenzyme F420 - F420H2 1,5-dihydrocoenzyme F420 - H4MPT tetrahydromethanopterin - CH=H4MPT N5, N10-methylenetetrahydromethanopterin - MFR methanofuran - HPLC high performance liquid chromatography - methylene-H4MPT dehydrogenase N5, N10-methylenetetrahydromethanopterin dehydrogenase - 1 U = 1 mol/min  相似文献   

15.
Prostaglandin E release rates from isolated strips of guinea-pig taenia coli increased during exposure to zero K+ bathing fluid, from control values of 0.78 ± 0.11 ng/g per min to levels as high as 29.2 ng/per min. Release rates increased for 40–50 min and then remained constant or fell despite progressive increases in intracellular sodium [Nai+] or fall in intracellular potassium [Ki+]. Readmittance of K+ to the bathing solution resulted in rapid reversal of elevated prostaglandin E release rates. [Na+i] and [K+i] were markedly more abnormal in strips exposed to zero K+ for 70–201 min compared to 30-min exposures. Upon the readdition of K+ after long zero K+ exposure, the rate of prostaglandin E release fell long before [Na+i] and [K+i] returned to control levels. After K+ was readded to the bathing solution, the ion concentration of tissues exposed to zero K+ for 30 min returned to normal much more quickly than did those of tissues exposed for the longer time periods, yet the exponential rate constants for fall of prostaglandin E release rate after K+ was added were not significantly different after short or long zero K+ exposure. Thus there was a dissociation between the return of [Na+i] and [K+i] and the fall of prostaglandin E release rate to control levels. Ouabain augmented prostaglandin E release under conditions where [K+i] could not fall. Addition of known neurotransmitters present in this tissue to the bathing fluid did not augment prostaglandin E release. Guinea-pig taenia coli strips that had been incubated with [3H]arachidonic acid, constantly released [3H]arachidonic acid and [3H]prostaglandin E and a prostaglandin which cochromatographed with prostaglandin E but could not be converted to prostaglandin B by alkali and was shown to be 6-ketoprostaglandin F. Release of [3H]arachidonic acid and [3H]prostaglandin E plus 6-[3H]ketoprostaglandin F was increased when strips were exposed to zero K+. Data obtained in this study suggest the augmented prostaglandin E release seen during zero K+ or ouabain is related to increased availability of unbound arachidonic acid at the site of cyclooxygenase in the cell. Augmented prostaglandin E release is apparently not related to alterations in intracellular electrolyte concentrations or release of known neurotransmitters.  相似文献   

16.
Methyl-coenzyme M reductase (MCR) catalyses the reduction of methyl-coenzyme M (CH3-S-CoM) with coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. It contains the nickel porphyrinoid F430 as prosthetic group which has to be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-derived EPR signal MCR-red1. We report here on experiments with methyl-coenzyme M analogues showing how they affect the activity and the MCR-red1 signal of MCR from Methanothermobacter marburgensis. Ethyl-coenzyme M was the only methyl-coenzyme M analogue tested that was used by MCR as a substrate. Ethyl-coenzyme M was reduced to ethane (apparent K M=20 mM; apparent V max=0.1 U/mg) with a catalytic efficiency of less than 1% of that of methyl-coenzyme M reduction to methane (apparent K M=5 mM; apparent V max=30 U/mg). Propyl-coenzyme M (apparent K i=2 mM) and allyl-coenzyme M (apparent K i=0.1 mM) were reversible inhibitors. 2-Bromoethanesulfonate ([I]0.5 V=2 µM), cyano-coenzyme M ([I]0.5 V=0.2 mM), 3-bromopropionate ([I]0.5 V=3 mM), seleno-coenzyme M ([I]0.5 V=6 mM) and trifluoromethyl-coenzyme M ([I]0.5 V=6 mM) irreversibly inhibited the enzyme. In their presence the MRC-red1 signal was quenched, indicating the oxidation of Ni(I) to Ni(II). The rate of oxidation increased over 10-fold in the presence of coenzyme B, indicating that the Ni(I) reactivity was increased in the presence of coenzyme B. Enzyme inactivated in the presence of coenzyme B showed an isotropic signal characteristic of a radical that is spin coupled with one hydrogen nucleus. The coupling was also observed in D2O. The signal was abolished upon exposure of the enzyme to O2. 3-Bromopropanesulfonate ([I]0.5 V=0.1 µM), 3-iodopropanesulfonate ([I]0.5 V=1 µM), and 4-bromobutyrate also inactivated MCR. In their presence the EPR signal of MCR-red1 was converted into a Ni-based EPR signal MCR-BPS that resembles in line shape the MCR-ox1 signal. The signal was quenched by O2. 2-Bromoethanesulfonate and 3-bromopropanesulfonate, which both rapidly reacted with Ni(I) of MRC-red1, did not react with the Ni of MCR-ox1 and MCR-BPS. The Ni-based EPR spectra of both inactive forms were not affected in the presence of high concentrations of these two potent inhibitors.  相似文献   

17.
β-d-Xylosidase/α-l-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme reported for catalyzing hydrolysis of 1,4-β-d-xylooligosaccharides to d-xylose. One property that could use improvement is its relatively high affinities for d-glucose and d-xylose (K i ~ 10 mM), which would impede its performance as a catalyst in the saccharification of lignocellulosic biomass for the production of biofuels and other value-added products. Previously, we discovered that the W145G variant expresses K i d-glucose and K i d-xylose twofold and threefold those of the wild-type enzyme. However, in comparison to the wild type, the variant expresses 11% lower k cat d-xylobiose and much lower stabilities to temperature and pH. Here, we performed saturation mutagenesis of W145 and discovered that the variants express K i values that are 1.5–2.7-fold (d-glucose) and 1.9–4.6-fold (d-xylose) those of wild-type enzyme. W145F, W145L, and W145Y express good stability and, respectively, 11, 6, and 1% higher k cat d-xylobiose than that of the wild type. At 0.1 M d-xylobiose and 0.1 M d-xylose, kinetic parameters indicate that W145F, W145L, and W145Y catalytic activities are respectively 46, 71, and 48% greater than that of the wild-type enzyme.  相似文献   

18.
The number of accessible SH groups was determined in membrane vesicles prepared from Enterococcus hirae grown under anaerobic conditions at alkaline pH (pH 8.0). Addition of ATP or nicotinamide adenine dinucleotides (NAD++NADH) to the vesicles caused a ∼4-fold or ∼1.9-fold increase in the number of SH-groups, respectively. This was inhibited by treatment with N-ethylmaleimide. The increase was significant when ATP and NAD++NADH both were added. The change was lacking in the presence of the F0F1-ATPase inhibitors N,N′-diclohexylcarbodiimide or sodium azide. This was also absent in atp mutant with defect in the F0F1-ATPase and, in addition, it was less in potassium ion–free medium. These results are correlated with data about K+-dependent F0F1-ATPase activity, suggesting a relationship between the F0F1-ATPase and K+ uptake Trk-like system. The latter may be regulated by NAD or NADH mediating conformational changes.  相似文献   

19.
Fructose 1,6-bisphosphatase (EC 3.1.3.11) from Saccharomyces cerevisiae has been purified to homogeneity. A molecular weight of 115,000 has been obtained by gel filtration. The enzyme appears to be a dimer with identical subunits. The apparent Km for fructose bisphosphatase varies with the Mg2+ concentration of the enzyme, being 1 × 10?6m at 10 mm Mg2+ and 1 × 10?5m at 2 mm Mg2+. Other phosphorylated compounds are not significantly hydrolyzed by the enzyme. An optimum pH of 8.0 is exhibited by the enzyme. This optimum is not changed by addition of EDTA. AMP inhibits the enzyme with a Ki of 8.0 × 10?5m at 25 °C. The inhibition is temperature dependent, the value of Ki increasing with raising temperature. 2-Deoxy-AMP is also inhibitory with a Ki value at 25 °C of 1.6 × 10?4m. An ordered uni-bi mechanism has been deduced for the reaction with phosphate leaving the enzyme as the first product and the fructose 6-phosphate as the second one.  相似文献   

20.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C-labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C]ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891–2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号