首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protease activity secreted by the Chinese Hamster Ovary (CHO-K1) cell line grown in serum-free medium was examined by substrate gel electrophoresis (zymography). The cell line expressed extracellular proteases that were active on gelatin zymograms but not on casein zymograms. The main protease band visible by gelatin zymography was approx. 92 kDa. Incubation of the conditioned medium with aminophenylmercuric acetate (APMA) resulted in the appearance of gelatinase activity at 82 kDa. Incubation of the conditioned media with EDTA significantly decreased the gelatinolytic activity of both the 92 kDa and 82 kDa forms, indicating the gelatinase responsible was a metalloprotease. Immunoblotting of the conditioned medium showed the gelatinase to be the pro- form of matrix metalloprotease-9 (pro-MMP-9), also known as gelatinase B.  相似文献   

2.
In order to better understand the role played by surface glycoconjugates during cell adhesion and endocytosis by the dematiaceous fungi Fonsecaea pedrosoi, we analyzed the interaction between this microorganism and five mutants of Chinese Hamster Ovary (CHO) cells, which differ from each other in the exposition of carbohydrate residues on the cell surface. Five clones (Gat-2 parental, and the clones: Lec1, Lec2, Lec8 and ldlLec1) were tested and the adhesion and endocytic indexes were determined after 2 hours of interaction. The Lec1 and ldlLec1 clones, which present exposed mannose residues, showed the greater adhesion index (AI). On the other hand, the Lec8 clone, which exposes N-acetylglucosamine on the cell surface, presented the greater endocytic index. The role played by surface-exposed carbohydrate residues was further analyzed by addition of mannose or N-acetylglucosamine to the interaction medium and by previous incubation of the cells in the presence of the lectins Concanavalin A (ConA) and wheat germ agglutinin (WGA). The results obtained suggest that mannose residues are involved in the first step of adhesion of F. pedrosoi to the cell surface, while N-acetylglucosamine residues are involved on its ingestion process. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
改造中国仓鼠卵巢细胞   总被引:4,自引:0,他引:4  
原核细胞、酵母细胞以及昆虫细胞相比,中国仓鼠卵巢细胞(CHO)作为宿主细胞表达的外源蛋白最接近其天然构象,因而CHO细胞表达系统是生物工程制药最为理想的表达系统。但这种系统也存在诸多缺点。如在大规模培养中CHO细胞会面临着对无血清培养基的适应性差、细胞无限度增殖以及细胞凋亡等很多难题。所以除了在培养基、培养条件和表达载体方面下功夫优化该系统外,对CHO细胞本身进行改造已成为优化CHO表达系统的另一热点。   相似文献   

4.
5.
生物膜信号转导与细胞凋亡   总被引:9,自引:1,他引:8  
胞外信号可经过相应的转导途径传至胞内,通过激活靶分子而产生细胞效应.细胞凋亡是受控于生物体精确调节的细胞主动消亡过程,具有独特而复杂的信号系统.特异性的胞膜蛋白及膜脂等皆可介导凋亡相关分子的级联激活,并通过活化凋亡关键调节分子Caspases蛋白酶家族,bcl-2基因家族及线粒体等而影响凋亡的进程.  相似文献   

6.
In an effort to develop robust Chinese Hamster Ovary host cell lines, a variety of anti‐apoptotic genes were over‐expressed, either singly or in combination, followed by screening of transfectants for improved cell growth, extended longevity, reduced caspase 3/7 activity, and enhanced mitochondrial membrane potential (MMP). Two particular cell lines, one containing two anti‐apoptotic genes, E1B‐19K and Aven (EA167), and another containing three, E1B‐19K, Aven, and a mutant of XIAP (EAX197), exhibited a reduction in caspase 3 activity of at least 60% and a 170% enhancement in mitochondrial membrane potential compared to controls when treated with staurosporine. In batch cell growth experiments, the peak viable cell densities and viabilities were higher resulting in a 186% increase in integrated viable cell densities. Analyses of metabolite utilization and formation of waste products indicated that the apoptotic resistant cell lines depleted all the lactate when grown in commercially available CD‐CHO medium while significant levels (>1.8 g/L) accumulated in the host cell lines. When the lactate level was replenished daily in the apoptotic resistant cell lines, the cell lines consumed lactate and the culture longevity was extended up to four additional days compared to control cell lines. Furthermore, the anti‐apoptosis cell lines also accumulated lower levels of ammonia. The ability of the apoptotic resistant cell lines to consume lactate was exploited by cultivating them in a “high” glucose medium containing 15 g/L (60 mM glucose) in which apoptotic resistant cell lines exhibited lower maximum lactate (1.8 g/L) compared to control cell lines which accumulated concentrations of lactate (2.2 g/L) that appeared to be deleterious for growth. The shaker flask titer of a therapeutic antibody product expressed in an apoptotic resistant cell line in “high” glucose medium reached 690 mg/L compared to 390 mg/L for a cell line derived from a control host cell line. These results represent to our knowledge the first example in the literature in which manipulation of the apoptosis pathway has altered the nutrient consumption profile of mammalian cells in culture; findings that underscore the interdependence of the apoptotic cellular machinery and metabolism and provide greater flexibility to mammalian bioreactor process development. Biotechnol. Bioeng. 2009;103: 592–608. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
哺乳动物细胞因其表达的外源蛋白最接近天然构象,已成为生产重组蛋白药物的理想系统。其中,中国仓鼠卵巢细胞(CHO)是目前最为常用的表达系统,但这种系统也存在很多缺点,如大规模培养中表达量低、生产成本高、细胞无限度增殖及细胞凋亡等。目前,通过优化培养基配方和培养条件很难从根本上解决上述问题,必须从整个表达系统着手进行改造,其中CHO细胞本身和表达载体的改造最为关键。  相似文献   

8.
9.
中国仓鼠卵巢细胞表达新技术   总被引:1,自引:0,他引:1  
中国仓鼠卵巢细胞(CHO细胞)是基因工程药物生产的最佳表达系统之一,在生物制药中被广泛应用。传统的获得高表达CHO细胞株的方法费时、费力。近年来出现了一些CHO细胞高效表达新技术,它们从克服位置效应,提高基因转录效率、mRNA翻译效率及稳定性、筛选高表达细胞的效率等不同层次调控外源基因在CHO细胞中的高效表达。与MTX加压扩增基因获得高效表达外源基因的方法比较,能够节约时间、减少工作量,不易丢失高表达细胞株。  相似文献   

10.
目的:通过悬浮适应,使中国仓鼠卵巢细胞(CHO细胞)获得悬浮生长的特性,并可在悬浮培养条件下较快地生长。方法:将CHO细胞以3×10^5/mL接种于100mL的三角瓶内,培养时加入1%小牛血清、1g/LPIuronic F-68、25μg/mL硫酸葡聚糖,培养体积35mL,摇床转速90r/min,每24h离心换液,当细胞增殖为2×10^6/mL时传代。结果:经过悬浮适应,细胞的平均比生长速率由适应最初的0.27/d提高为适应后的0.48/d,最大总细胞密度由适应初期的2.5×10^6/mL提高为适应后的6.3×10^6/mL,目的蛋白活性也由适应前的2781U/mL提高为适应后的8878U/mL,适应后细胞的葡萄糖平均比消耗率为1.42μmol/(10^6细胞·d),低于适应前的2.16μmol/(10^6细胞·d)。结论:贴壁生长的CHO细胞经过悬浮适应,不仅可以在悬浮培养条件下快速生长,而且细胞对葡萄糖的利用率也得到提高。  相似文献   

11.
12.
13.
14.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

15.
Caspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase‐2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase‐2 also regulates autophagy, genomic stability and ageing. Caspase‐2 requires dimerization for its activation which is primarily accomplished by recruitment to high molecular weight protein complexes in cells. Here, we demonstrate that apoptosis inhibitor 5 (API5/AAC11) is an endogenous and direct inhibitor of caspase‐2. API5 protein directly binds to the caspase recruitment domain (CARD) of caspase‐2 and impedes dimerization and activation of caspase‐2. Interestingly, recombinant API5 directly inhibits full length but not processed caspase‐2. Depletion of endogenous API5 leads to an increase in caspase‐2 dimerization and activation. Consistently, loss of API5 sensitizes cells to caspase‐2‐dependent apoptotic cell death. These results establish API5/AAC‐11 as a direct inhibitor of caspase‐2 and shed further light onto mechanisms driving the activation of this poorly understood caspase.  相似文献   

16.
线粒体跨膜电位与细胞凋亡   总被引:29,自引:2,他引:29  
细胞凋亡作为细胞固有的、受机体严密调控的细胞死亡形式,在多细胞生物体清除衰老细胞及无能细胞等方面发挥重要的作用.近年来,细胞凋亡的研究重点已从细胞核转向线粒体.各种死亡信号诱导线粒体膜通透性改变孔(permeability transition pore, PT pore)开放,引起线粒体跨膜电位下降,导致促凋亡物质释放,继而激活caspase,最终使细胞凋亡.Bcl-2和Bcl-XL通过对线粒体作用而抑制细胞凋亡,而Bax、Bak与Bad通过调节线粒体而诱导细胞凋亡.  相似文献   

17.
Apoptosis in CHO cell batch cultures: examination by flow cytometry   总被引:3,自引:0,他引:3  
Chinese hamster ovary cells grown under conditions which are optimal for the production of a genetically engineered protein in batch culture, lose significant viability shortly after entering the stationary phase. This cell death was investigated morphologically and was found to be almost exclusively via apoptosi. Furthermore, cells were analyzed by flow cytometry using a fluorescent DNA end-labeling assay to label apoptotic cells, in conjunction with cell cycle analysis using propidium iodide. Apoptotic cells could be detected by this method, and by the radioactive end-labeling of extracted DNA, on all days of culture from day 1 to day 7; however, the degree of apoptotic cell death increased dramatically when the cells entered the stationary phase, rising to 50–60% of the total cell number at the termination of the culture. Flow cytometric analysis showed that the majority of cells underwent apoptosis whilst in G1/G0 and formed an apoptotic population with high DNA FITC end-labeling and hypodiploid propidium iodide binding. Additionally, the ability or inability to secrete specific protein products did not appear to interfere with the development of the apoptotic population with time.  相似文献   

18.
Various antitumor agents induce apoptotic cell death in tumor cells. Since the apoptosis program in tumor cells plays a critical role in the chemotherapy-induced tumor cell killing, it is suggested that the defect in the signaling pathway of apoptosis could cause a new form of multidrug resistance in tumor cells. This article describes the recent findings concerning the mechanisms of chemotherapy-induced apoptosis and discusses the implication of apoptosis resistance in cancer chemotherapy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
干扰素α2b(interferonα2b,IFNα2b)是一种用于病毒性疾病和肿瘤性疾病治疗的多功能细胞因子,因其在体内的半衰期短限制了其在临床上的应用。将IFNα2b连接到人血清白蛋白(human serum albumin,HSA)的C端,构建融合蛋白HSA-IFNα2b。构建含融合蛋白的真核表达质粒p MH3/HSA-IFNa2b,经电转的方法转入中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞中。经G418抗性压力筛选和目的蛋白的表达量筛选,最终获得一株高表达的稳定细胞株(CHO/p MH3/HSA-IFNa2b)。表达的目的蛋白经Western blot验证显示,产物具有IFNα2b和HSA的双抗原性。经悬浮驯化稳定后,通过批次筛选得到一株稳定的高克隆表达株,产量约为65mg/L,进一步选取高表达克隆株在悬浮驯化中不同代数进行批次培养,不同代数之间蛋白质的表达量和生长情况没有明显的差异,获得一株稳定遗传表达的单克隆细胞株,3L摇瓶的流加培养结果显示,最佳发酵时间为15天,蛋白质表达量为121mg/L。经离心获得的发酵液,经两步纯化后获得蛋白质纯度高达96.8%的目的蛋白,总回收率为22.3%。参照《中国药典》2015版对IFNα2b的检测方法,结果显示,CHO表达的HSA-IFNα2b比活性为4.16×106IU/mg。首次将HSA-IFNα2b在哺乳动物细胞CHO中构建表达,表达获得高活性的HSA-IFNα2b融合蛋白。  相似文献   

20.
Mammalian cells are used for the production of numerous biologics including monoclonal antibodies. Unfortunately, mammalian cells can lose viability at later stages in the cell culture process. In this study, the effects of expressing the anti-apoptosis genes, E1B-19K and Aven, separately and in combination on cell growth, survival, and monoclonal antibody (MAb) production were investigated for a commercial Chinese Hamster Ovary (CHO) mammalian cell line. CHO cells were observed to undergo apoptosis following a model insult, glucose deprivation, and at later stages of batch cell culture. The CHO cell line was then genetically modified to express the anti-apoptotic proteins E1B-19K and/or Aven using an ecdysone-inducible expression system. Stable transfected pools induced to express Aven or E1B-19K alone were found to survive 1-2 days longer than the parent cell line following glucose deprivation while the expression of both genes in concert increased cell survival by 3 days. In spinner flask batch studies, a clonal isolate engineered to express both anti-apoptosis genes exhibited a longer operating lifetime and higher final MAb titer as a result of higher viable cell densities and viabilities. Interestingly, survival was increased in the absence of an inducer, most likely as a result of leaky expression of the anti-apoptosis genes confirmed in subsequent PCR studies. In fed-batch bioreactors, the expression of both anti-apoptosis genes resulted in higher growth rates and cell densities in the exponential phase and significantly higher viable cell densities, viabilities, and extended survival during the post-exponential phase. As a result, the integral of viable cells (IVC) was between 40 and 100% higher for cell lines engineered to express both Aven and E1B-19K in concert, and the operational lifetime of the fed-batch bioreactors was increased from 2 to 5 days. The maximum titers of MAb were also increased by 40-55% for bioreactors containing cells expressing Aven and E1B-19K. These increases in volumetric productivity arose primarily from enhancements in viable cell density over the course of the fed-batch culture period since the specific productivities for the cells expressing anti-apoptosis genes were comparable or slightly lower than the parental hosts. These results demonstrate that expression of anti-apoptosis genes can enhance culture performance and increase MAb titers for mammalian CHO cell cultures especially under conditions such as extended fed-batch bioreactor operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号