首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimating sexual dimorphism in skeletal and dental features of fossil species is difficult when the sex of individuals cannot be reliably determined. Several different methods of estimating dimorphism in this situation have been suggested: extrapolation from coefficients of variation, division of a sample about the mean or median into two subsamples which are then treated as males and females, and finite mixture analysis (specifically for estimating the maximum dimorphism that could be present in a unimodal distribution). The accuracy of none of these methods has been thoroughly investigated and compared in a controlled manner. Such analysis is necessary because the accuracy of all methods is potentially affected by fluctuations in either sample size, sex ratio, or the magnitude of intrasexual variability. Computer modeling experiments show that the mean method is the least sensitive to fluctuations in these parameters and generally provides the best estimates of dimorphism. However, no method can accurately estimate low to moderate levels of dimorphism, particularly if intrasexual variability is high and sex ratios are skewed. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The difference between male and female values of quantitative traits depends on the distribution of the variables within each sex, increasing with the rise in the difference between male and female average values and with the decrease of the dispersion of measurements in both sexes. This paper deals with the sensitivity of some widely used indices (relative difference between male and female mean values (MDI), Student's t, and the so-called Bennett-Chakraborty-Majumder D coefficient) with respect to intrasexual variability. The Kolmogorov-Smirnov distance (KS) is suggested here as a further index of dimorphism, although it is not usually utilized for this purpose. The theoretical approach is accompanied by the analysis of empirical data (metric variables obtained from a sample of present Sardinians) and by computer simulations under various assumptions. Indices based on the difference between male and female average values are not able to evaluate fully the various aspects of dimorphism. Student's t proved to be an adequate measure of whole sex differences, both in real and in simulated samples, as intrasexual variability is included in its formulation. The D index also proved to be a good measure of undivided sexual dimorphism, as it is the result of formal examination, and from application to empirical or to simulated cases. The Kolmogorov-Smirnov distance gave the best performance both in formal examination and in the whole simulation results, as it takes into account intrasexual variability, and is applicable to any kind of distribution. In simulated cases it was sensitive to variations of means and variances, and it was able to evaluate variance dimorphism. Since the last three indices measure the combined effect of size and variance dimorphism, the joint use of the MDI index is suggested in order to isolate the relative contribution of the difference between the means. Am J Phys Anthropol 109:501–508, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
The data used in studies of bivariate interspecific allometry usually violate the assumption of statistical independence. Although the traits of each species are commonly treated as independent, the expression of a trait among species within a genus may covary because of shared common ancestry. The same effect exists for genera within a family and so on up the phylogenetic hierarchy. Determining sample size by counting data points overestimates the effective sample size, which then leads to overestimating the degrees of freedom that should be used in calculating probabilities and confidence intervals. This results in an inflated Type 1 error rate. Although some workers (e.g., Felsenstein [1985] Am. Nat. 125:1–15) have suggested that this issue may invalidate interspecific allometry as a comparative method, a correction for the problem can be approximated with variance components from a nested analysis of variance. Variance components partition the total variation in the data set among the levels of the nested hierarchy. If the variance component for each nested level is weighted by the number of groups at that level, the sum of these values is an estimate of an effective sample size for the data set which reflects the effects of phylogenetic constraint. Analysis of two data sets, using taxonomy to define levels of the nested hierarchy, suggests that it has been common for published studies of interspecific allometry to severely overestimate the number of degrees of freedom. Interspecific allometry remains an important comparative method for evaluating questions concerning individual species that are not similarly addressed by the format of most of the newer comparative methods. With the correction proposed here for estimating degrees of freedom, the major statistical weakness of the procedure is substantially reduced. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Body size and host range in European Heteroptera   总被引:2,自引:0,他引:2  
We used data on body size and host range of phytophagous Heteroptera in central Europe, an inverse measure of specialisation, to analyse the relationship of body size vs specialisation: 1) we found a clear positive relationship between body size and host range using species as independent data points. 2) However, a nested analysis of variance shows that most of the variance in body size occurred at higher taxonomic levels whereas most of the variance in host specialisation occurred between species. This suggests different phylogenetic inertia of body size and specialisation. Nevertheless, using means of different higher taxonomic levels there is still a significant positive correlation between body size and host range. 3) With more sophisticated methods of correcting for the phylogenetic relatedness between species, the positive correlation between body size and host range still holds, despite the different assumptions of each method. Thus, the relationship between body size and host range is a very robust pattern in true bugs.  相似文献   

5.
In anthropological studies, visual indicators of sex are traditionally scored on an ordinal categorical scale. Logistic and probit regression models are commonly used statistical tools for the analysis of ordinal categorical data. These models provide unbiased estimates of the posterior probabilities of sex conditional on observed indicators, but they do so only under certain conditions. We suggest a more general method for sexing using a multivariate cumulative probit model and examine both single indicator and multivariate indicator models on a sample of 138 crania from a Late Mississippian site in middle Tennessee. The crania were scored for five common sex indicators: superciliary arch form, chin form, size of mastoid process, shape of the supraorbital margin, and nuchal cresting. Independent assessment of sex for each individual is based on pubic indicators. The traditional logistic regressions are cumbersome because of limitations imposed by missing data. The logistic regression correctly classified 66/74 males and 46/64 females, with an overall correct classification of 81%. The cumulative probit model classified 64/74 males correctly and 51/64 females correctly for an overall correct classification rate of 83%. Finally, we apply parameters estimated from the logit and probit models to find posterior probabilities of sex assignment for 296 additional crania for which pubic indicators were absent or ambiguous. Am J Phys Anthropol 107:97–112, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The tradeoff between survival and reproduction is a central feature of life‐history variation, but few studies have sought to explain why females of some species exhibit relatively lower survival than expected for a given level of reproductive effort (RE). Intralocus sexual conflict theory proposes that sex differences in selection on survival and RE may, by virtue of shared genes underlying these components of fitness, prevent females from optimizing this life‐history tradeoff. To test this hypothesis, we used a phylogenetically based comparative analysis of published estimates for mean annual survival and RE from females of 82 lizard species to (1) characterize the tradeoff between survival and reproduction and (2) test whether variation around this tradeoff is explained by sexual size dimorphism (SSD), a potential proxy for sexual conflict over life‐history traits. Across species, we found a strong negative correlation between mean annual survival and RE, confirming this classic life‐history tradeoff. Although residual variance around this tradeoff is unrelated to the absolute magnitude of SSD, it is strongly related to the direction of SSD. Specifically, we found that females have lower survival than expected for a given level of RE in female‐larger species, whereas they have higher survival than expected in male‐larger species. Given that female‐larger SSD is thought to reflect selection for increased fecundity, our results suggest that intralocus sexual conflict may be particularly likely to constrain female life‐history evolution in situations where increased RE is favored, but the phenotypes that facilitate this increase (e.g., body size) are constrained by antagonistic selection on males.  相似文献   

7.
Like the majority of Columbiformes, the Laughing Dove Spilopelia senegalensis is sexually monomorphic in plumage, but seems to be slightly dimorphic in size. However, due to the lack of studies little is known about the sexual size dimorphism in this species. In this work, we used morphometric data on a sample of 61 Laughing Doves from southern Tunisia, and sexed using a DNA-based method, to assess size differences between males and females and to determine a discriminant function useful for sex identification. The results showed that wing length was the most dimorphic trait, which could be due to the effects of sexual selection. The best function for the discrimination between sexes included wing length and head length, which is comparable with findings on other dove species. This discriminant function accurately classified 89% of birds, providing a rapid and accurate tool for sex identification in the studied population. Further data from different populations are needed for firmer conclusions about the extent of sexual size dimorphism and the reliability of the morphometric sexing approach in this dove species.  相似文献   

8.
The fact that characters may co-vary in organism groups because of shared ancestry and not always because of functional correlations was the initial rationale for developing phylogenetic comparative methods. Here we point out a case where similarity due to shared ancestry can produce an undesired effect when conducting an independent contrasts analysis. Under special circumstances, using a low sample size will produce results indicating an evolutionary correlation between characters where an analysis of the same pattern utilizing a larger sample size will show that this correlation does not exist. This is the opposite effect of increased sample size to that expected; normally an increased sample size increases the chance of finding a correlation. The situation where the problem occurs is when co-variation between the two continuous characters analysed is clumped in clades; e.g. when some phylogenetically conservative factors affect both characters simultaneously. In such a case, the correlation between the two characters becomes contingent on the number of clades sharing this conservative factor that are included in the analysis, in relation to the number of species contained within these clades. Removing species scattered evenly over the phylogeny will in this case remove the exact variation that diffuses the evolutionary correlation between the two characters - the variation contained within the clades sharing the conservative factor. We exemplify this problem by discussing a parallel in nature where the described problem may be of importance. This concerns the question of the presence or absence of Rensch's rule in primates.  相似文献   

9.
Background and AimsThe relative contributions of inter- and intraspecific variation to phytolith shape and size have only been investigated in a limited number of studies. However, a detailed understanding of phytolith variation patterns among populations or even within a single plant specimen is of key importance for the correct taxonomic identification of grass taxa in fossil samples and for the reconstruction of vegetation and environmental conditions in the past. In this study, we used geometric morphometric analysis for the quantification of different sources of phytolith shape and size variation.MethodsWe used landmark-based geometric morphometric methods for the analysis of phytolith shapes in two extant grass species (Brachypodium pinnatum and B. sylvaticum). For each species, 1200 phytoliths were analysed from 12 leaves originating from six plants growing in three populations. Phytolith shape and size data were subjected to multivariate Procrustes analysis of variance (ANOVA), multivariate regression, principal component analysis and linear discriminant analysis.Key ResultsInterspecific variation largely outweighed intraspecific variation with respect to phytolith shape. Individual phytolith shapes were classified with 83 % accuracy into their respective species. Conversely, variation in phytolith shapes within species but among populations, possibly related to environmental heterogeneity, was comparatively low.ConclusionsOur results imply that phytolith shape relatively closely corresponds to the taxonomic identity of closely related grass species. Moreover, our methodological approach, applied here in phytolith analysis for the first time, enabled the quantification and separation of variation that is not related to species discrimination. Our findings strengthen the role of grass phytoliths in the reconstruction of past vegetation dynamics.  相似文献   

10.
《Journal of morphology》2017,278(8):1091-1104
Pores and sensilla on ostracod shell have often been used in studies of ontogeny, taxonomy, and phylogeny of the group. However, an analysis of sexual dimorphism and variation between valves in the number and distribution of pores is lacking. Also, such studies have never been done on a widely distributed, morphologically variable, and weakly ornamented freshwater ostracod. Here, we survey pores in one such species, Physocypria kraepelini . We choose 27 homologous pores as landmarks for 2D‐geometric morphometric analysis, with the aim to assess intersexual and between valves variation in size and shape relative to the Fourier outline analysis. This species has only simple (Type A) pores with and without a lip, and each pore carries an undivided sensory seta. Our results show that the total number of pores varies (from 270 to 296), but this is not associated with a specific valve. Males carry fewer pores than females, however no sex specific pores are found. Small intrapopulation divergence of the Cyt b molecular marker (1%) indicates that morphological variability is not species related. We found that P. kraepelini exhibits directional asymmetry of size and shape, sexual size dimorphism (SSD) but lacks sexual shape dimorphism (SShD). Two geometric morphometrics methods were congruent in the estimation of SSD, SShD, and directional asymmetry of shape but differ in the statistical evaluation of directional asymmetry of size. Contrary to other animal groups, our study suggests that ostracods have more pronounced directional asymmetry of shape compared to directional asymmetry of size.  相似文献   

11.
The fossil sample attributed to the late Miocene hominoid taxon Ouranopithecus macedoniensis is characterized by a high degree of dental metric variation. As a result, some researchers support a multiple-species taxonomy for this sample. Other researchers do not think that the sample variation is too great to be accommodated within one species. This study examines variation and sexual dimorphism in mandibular canine and postcanine dental metrics of an Ouranopithecus sample. Bootstrapping (resampling with replacement) of extant hominoid dental metric data is performed to test the hypothesis that the coefficients of variation (CV) and the indices of sexual dimorphism (ISD) of the fossil sample are not significantly different from those of modern great apes. Variation and sexual dimorphism in Ouranopithecus M(1) dimensions were statistically different from those of all extant ape samples; however, most of the dental metrics of Ouranopithecus were neither more variable nor more sexually dimorphic than those of Gorilla and Pongo. Similarly high levels of mandibular molar variation are known to characterize other fossil hominoid species. The Ouranopithecus specimens are morphologically homogeneous and it is probable that all but one specimen included in this study are from a single population. It is unlikely that the sample includes specimens of two sympatric large-bodied hominoid species. For these reasons, a single-species hypothesis is not rejected for the Ouranopithecus macedoniensis material. Correlations between mandibular first molar tooth size dimorphism and body size dimorphism indicate that O. macedoniensis and other extinct hominoids were more sexually size dimorphic than any living great apes, which suggests that social behaviors and life history profiles of these species may have been different from those of living species.  相似文献   

12.
禄丰古猿的两性差别   总被引:4,自引:1,他引:3  
本文首先讨论了粗壮池猿化石标本的性别判断问题,然后把粗壮池猿和禄丰西瓦古猿分别与有关的现生猿类的两性差别进行比较研究,得出这两个进化系统性别差异的时代变化的结论。这样的结论支持禄丰西瓦古猿的系统地位的论证。  相似文献   

13.
In six species of dimorphic raptors (females larger than males)and one passerine (males larger than females), the sex ratioat fledging varied systematically with brood size at fledging.In all species the strongest bias toward the smaller sex wasestablished in the largest as well as the smallest broods; amore even distribution of males and females was observed inbroods of intermediate size. We explored a specific differentialmortality explanation for this sex ratio variation. Our hypothesispostulates that variation in mortality is caused by differencesin food demand between broods of the same size, due to theirsex composition. Data from the marsh harrier Circus aeruginosuson gender-related food demand and overall nestling mortalitywere used to predict the frequency of surviving males and femalesat fledging, assuming an even sex ratio at hatching and randommortality with respect to both sexes within broods. The modelquantitatively fits the marsh harrier data well, especiallyin broods originating from large dutches. Although we anticipatethat other mechanisms are also involved, the results supportthe hypothesis of sex-ratio-dependent mortality, differentialbetween broods, as the process generating the observed brood-sizedependence of fledgling sex ratios in sexually dimorphic birds.  相似文献   

14.
Stillwell RC  Fox CW 《Oecologia》2007,153(2):273-280
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.  相似文献   

15.
Major theories compete to explain the macroevolutionary trends observed in sexual size dimorphism (SSD) in animals. Quantitative genetic theory suggests that the sex under historically stronger directional selection will exhibit greater interspecific variance in size, with covariation between allometric slopes (male to female size) and the strength of SSD across clades. Rensch''s rule (RR) also suggests a correlation, but one in which males are always the more size variant sex. Examining free-living pelagic and parasitic Copepoda, we test these competing predictions. Females are commonly the larger sex in copepod species. Comparing clades that vary by four orders of magnitude in their degree of dimorphism, we show that isometry is widespread. As such we find no support for either RR or for covariation between allometry and SSD. Our results suggest that selection on both sexes has been equally important. We next test the prediction that variation in the degree of SSD is related to the adult sex ratio. As males become relatively less abundant, it has been hypothesized that this will lead to a reduction in both inter-male competition and male size. However, the lack of such a correlation across diverse free-living pelagic families of copepods provides no support for this hypothesis. By comparison, in sea lice of the family Caligidae, there is some qualitative support of the hypothesis, males may suffer elevated mortality when they leave the host and rove for sedentary females, and their female-biased SSD is greater than in many free-living families. However, other parasitic copepods which do not appear to have obvious differences in sex-based mate searching risks also show similar or even more extreme SSD, therefore suggesting other factors can drive the observed extremes.  相似文献   

16.
We propose a new method to estimate and correct for phylogenetic inertia in comparative data analysis. The method, called phylogenetic eigenvector regression (PVR) starts by performing a principal coordinate analysis on a pairwise phylogenetic distance matrix between species. Traits under analysis are regressed on eigenvectors retained by a broken-stick model in such a way that estimated values express phylogenetic trends in data and residuals express independent evolution of each species. This partitioning is similar to that realized by the spatial autoregressive method, but the method proposed here overcomes the problem of low statistical performance that occurs with autoregressive method when phylogenetic correlation is low or when sample size is too small to detect it. Also, PVR is easier to perform with large samples because it is based on well-known techniques of multivariate and regression analyses. We evaluated the performance of PVR and compared it with the autoregressive method using real datasets and simulations. A detailed worked example using body size evolution of Carnivora mammals indicated that phylogenetic inertia in this trait is elevated and similarly estimated by both methods. In this example, Type I error at α = 0.05 of PVR was equal to 0.048, but an increase in the number of eigenvectors used in the regression increases the error. Also, similarity between PVR and the autoregressive method, defined by correlation between their residuals, decreased by overestimating the number of eigenvalues necessary to express the phylogenetic distance matrix. To evaluate the influence of cladogram topology on the distribution of eigenvalues extracted from the double-centered phylogenetic distance matrix, we analyzed 100 randomly generated cladograms (up to 100 species). Multiple linear regression of log transformed variables indicated that the number of eigenvalues extracted by the broken-stick model can be fully explained by cladogram topology. Therefore, the broken-stick model is an adequate criterion for determining the correct number of eigenvectors to be used by PVR. We also simulated distinct levels of phylogenetic inertia by producing a trend across 10, 25, and 50 species arranged in “comblike” cladograms and then adding random vectors with increased residual variances around this trend. In doing so, we provide an evaluation of the performance of both methods with data generated under different evolutionary models than tested previously. The results showed that both PVR and autoregressive method are efficient in detecting inertia in data when sample size is relatively high (more than 25 species) and when phylogenetic inertia is high. However, PVR is more efficient at smaller sample sizes and when level of phylogenetic inertia is low. These conclusions were also supported by the analysis of 10 real datasets regarding body size evolution in different animal clades. We concluded that PVR can be a useful alternative to an autoregressive method in comparative data analysis.  相似文献   

17.
Population size is an important parameter to monitor for species conservation and management. This is especially important for rare and endangered species, as declines can give information about anthropogenic impacts and the need for new conservation measures. To estimate population size, various methods of analysis can be used, for which sample size is an important factor. Sample size is particularly important to consider when applying non-invasive sampling strategies such as sampling faeces or feathers/hairs as a source of DNA, as a means to limit disturbance and stress for the species of concern. We investigated a Black Grouse Lyrurus tetrix population in the eastern part of the Alps, in East Tyrol (Austria), and estimated population size using two approaches: capture–recapture and rarefaction. With a set of 12 polymorphic microsatellite markers, we identified genotypes from faeces and feathers (backed up with 23 tissue samples) and checked for population substructure and gene flow among sampling sites. We estimated population size using four different models from the two approaches (molecular capture–recapture: TIRM, TIRMpart; rarefaction: hyperbolic function – Kohn, exponential function – Eggert). To evaluate the impact of sample size on the estimations, we used the full dataset of 500 samples (‘complete’ dataset) and half the dataset of 250 samples (‘half’ dataset). We also estimated the population size for each sex separately using complete and half datasets to check for sex-specific differences in population size. We found similar results in three of four models (capture–recapture: capwire TIRM, capwire TIRMpart; rarefaction: rarefaction Kohn). Using just half of the data increased the uncertainties in the estimation of population size in all models used and deviations were particularly large in females, which indicated a sex bias. Only the complete dataset of males had an observation rate of more than two observations/individual, and this observation rate meets the recommendation for using the capwire models. This indicates that, for species with different sex-specific detectability, larger sample sizes do not generally imply higher observation rates. We conclude that calculating the observation rates and population-size estimations for each sex separately can improve overall population-size estimation, especially in species with biased sex ratios and those that exhibit sex-specific behaviour.  相似文献   

18.
Our aim is to identify ecomorphological adaptations in the skull shape of the South American howler monkeys (species of the genus Alouatta, Lacépède, 1799, Primates, Atelidae). Since Alouatta is relatively homogenous in feeding ecology, we expect skull shape variation to be relatively conservative across species. We used geometric morphometrics to quantify craniodental morphology in six species of Alouatta. Multivariate regression, two-block Partial Least Squares, and variation partitioning were used to test for the impact of taxonomy, sexual dimorphism, allometry, geography and climate on skull shape. We found morphological overlap among species and sexes, although some discrimination occurs between species living in seasonal environments as opposed to rain forest species. There was a negative latitudinal gradient in skull size across species, with size explaining 34% of total shape variance. Latitude and climate, though important, were secondary in explaining shape variance. Amazonian Alouatta are larger, have thinner molars, wide incisors, and proportionally larger neurocranium. Overall, the shape of southern species seem well adapted to cope with proportionally tougher food items, whereas Amazonian species seem better equipped to deal with a diet richer in fruits, as confirmed by independent field observations. The small size of Alouatta in the South is possibly linked to the effect of competition with the larger folivorous atelid Brachyteles.  相似文献   

19.
The parents of sexually size-dimorphic offspring are often assumed to invest more resources producing individuals of the larger sex. A range of different methods have been employed to estimate relative expenditure on the sexes, including quantifying sex-specific offspring growth, food intake, energy expenditure and energy intake, in addition to measures of parental food provisioning and energy expenditure. These methods all have the potential to provide useful estimates of relative investment, but each has particular problems of interpretation, and few studies have compared the estimates derived concurrently from more than two of these measures. In this study we compared these surrogate measures of parental investment in the brown songlark Cinclorhamphus cruralis, which exhibits one of the most extreme cases of sexual size dimorphism among birds. At 10 days of age we found that male chicks, on average, were 49% heavier, received 42% more prey items, expended 44% more energy and ingested 50% more metabolizable energy than their sisters. Furthermore, we created, experimentally, both all-male and all-female broods of 10-day-old chicks and found that mothers delivered 43% more prey items and expended 27% more energy when provisioning all-male broods, providing the first direct evidence for a change in parental energy expenditure in relation to brood sex ratio. These data reveal remarkable agreement between these estimates of investment and suggest that all may provide quantitatively useful information on sex allocation. However, the lower variance associated with estimates of relative mass and energy intake suggest that these methods may be of greater utility, although this may primarily reflect the shorter period over which our provisioning data were collected.  相似文献   

20.
A precise method was used for estimating the proportion of heritable variation in two life history parameters of the yellow dung fly, whereby environmental components of variance were minimized. Significant heritable variation for body size was revealed for father to son and mother to daughter relationships. Variation in development time was not significantly heritable. There is a marked sexual dimorphism in body size in this species which is discussed in the light of the observed sex-genotype interaction in heritabilities and low genetic correlation for size between the sexes. It is suggested that opposing pressures of sexual and natural selection and/or genetic pleotropy may be responsible for the maintenance of heritable variation, and the evolution of sexual dimorphism in these two traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号