首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of temperature (20-70 °C) on the gelatinization and retrogradation of potato starch-water mixtures (10-70%, w/w) treated with high hydrostatic pressure (HHP) (400-1000 MPa) was investigated. Gelatinization enthalpy change (ΔHgel) and re-gelatinization enthalpy change of retrograded crystalline part (ΔHretro) of the HHP-treated starch were evaluated using differential scanning calorimetry. The value of ΔHgel of 10-20% (w/w) mixtures decreased with increased pressure and temperature, while ΔHgel of 30-50% (w/w) mixtures decreased to certain values with increased pressure and the values depended on treatment temperature. With higher temperature and pressure conditions, ΔHgel of 10-40% (w/w) mixtures reached zero, but ΔHgel of 50-70% (w/w) mixtures did not. Retrogradation was observed with HHP-treated 20-60% (w/w) mixtures and the value of ΔHretro depended on the starch content, pressure, and temperature. The value of ΔHretro trended to increase with increase in starch content. In addition, retrogradation was promoted by HHP treatment at low temperature. Gelatinizaiton and retrogradation behaviors of HHP-treated (400-1000 MPa) potato starch-water mixtures (10-70%, w/w) at 20-70 °C were summerized in a series of state diagrams.  相似文献   

2.
To evaluate the biological preference of [Yb(phen)2(OH2)Cl3](H2O)2 (phen is 1,10-phenanthroline) for DNA, interaction of Yb(III) complex with DNA in Tris–HCl buffer is studied by various biophysical and spectroscopic techniques which reveal that the complex binds to DNA. The results of fluorescence titration reveal that [Yb(phen)2(OH2)Cl3](H2O)2 has strongly quenched in the presence of DNA. The binding site number n, apparent binding constant K b, and the Stern–Volmer quenching constant K SV are determined. ΔH 0, ΔS 0, and ΔG 0 are obtained based on the quenching constants and thermodynamic theory (ΔH 0?>?0, ΔS 0?>?0, and ΔG 0?<?0). The experimental results show that the Yb(III) complex binds to DNA by non-intercalative mode. Groove binding is the preferred mode of interaction for [Yb(phen)2(OH2)Cl3](H2O)2 to DNA. The DNA cleavage results show that in the absence of any reducing agent, Yb(III) complex can cleave DNA. The antimicrobial screening tests are also recorded and give good results in the presence of Yb(III) complex.  相似文献   

3.
Starch from the fruits of sweetsop (Anonna squamosa) and soursop (Anonna muricata) were isolated and purified and the fat, ash, phosphorus and protein contents measured. The amount of amylose present was determined spectrophotometrically and found to be very similar (19%) for both starches. Scanning electron microscopy showed very small indented and spherical granules from both with an average granule size of 4.84 μm and 4.72 μm, respectively. The physicochemical properties, namely the swelling power, solubility, pasting characteristics, paste clarity and freeze–thaw stability were studied to assess the functionality of the starch pastes as hydrocolloids. The sweetsop starch showed higher swelling power and solubility compared to soursop starch and had a lower gelatinization temperature indicating a weaker granular structure. Sweetsop starch exhibited a lower pasting temperature, higher viscosity peak, higher viscosity breakdown and lower setback, higher paste clarity and freeze–thaw stability compared to soursop starch. The low gelatinization temperature and high freeze thaw stability of sweetsop starch are comparable to that of waxy corn. The properties of sweetsop indicate that it has potential for application as a thickener in frozen foods.  相似文献   

4.
We have investigated H2 production on glucose, xylose, arabinose, and glycerol in Thermotoga maritima and T. neapolitana. Both species metabolised all sugars with hydrogen yields of 2.7–3.8 mol mol−1 sugar. Both pentoses were at least comparable to glucose with respect to their qualities as substrates for hydrogen production, while glycerol was not metabolised by either species. Glycerol was also not metabolised by T. elfii. We also demonstrated that T. neapolitana can use wet oxidised wheat straws, in which most sugars are stored in glycoside polymers, for growth and efficient hydrogen production, while glucose, xylose and arabinose are consumed in parallel.  相似文献   

5.
Recovery from reversible freeze–thaw injury in plants is a critical component of ultimate frost survival. However, little is known about this aspect at the cellular level. To explore possible cellular mechanism(s) for post‐thaw recovery (REC), we used Spinacia oleracea L. cv. Bloomsdale leaves to first determine the reversible freeze–thaw injury point. Freeze (–4.5°C)–thaw‐injured tissues (32% injury vs <3% in unfrozen control) fully recovered during post‐thaw, as assessed by an ion leakage‐based method. Our data indicate that photosystem II efficiency (Fv/Fm) was compromised in injured tissues but recovered during post‐thaw. Similarly, the reactive oxygen species (O2?? and H2O2) accumulated in injured tissues but dissipated during recovery, paralleled by the repression and restoration, respectively, of activities of antioxidant enzymes, superoxide dismutase (SOD) (EC. 1.14.1.1), and catalase (CAT) (EC.1.11.1.6) and ascorbate peroxidase (APX) (EC.1.11.1.11). Restoration of CAT and APX activities during recovery was slower than SOD, concomitant with a slower depletion of H2O2 compared to O2??. A hypothesis was also tested that the REC is accompanied by changes in the expression of water channels [aquaporines (AQPs)] likely needed for re‐absorption of thawed extracellular water. Indeed, the expression of two spinach AQPs, SoPIP2;1 and SoδTIP, was downregulated in injured tissues and restored during recovery. Additionally, a notion that molecular chaperones [heat shock protein of 70 kDa (HSP70s)] and putative membrane stabilizers [dehydrins (DHNs)] are recruited during recovery to restore cellular homeostasis was also tested. We noted that, after an initial repression in injured tissues, the expression of three HSP70s (cytosolic, endoplasmic reticulum and mitochondrial) and a spinach DHN (CAP85) was significantly restored during the REC.  相似文献   

6.
Telomerase inhibition through G‐quadruplex stabilization by small molecules is of great interest as a novel anticancer therapeutic strategy. Here, we show that newly synthesized Cu‐complex binds to G‐quadruplex DNA and induces changes in its stability. This biophysical interaction was investigated in vitro using spectroscopic, voltammetric and computational techniques. The binding constant for this complex to G‐quadruplex using spectroscopic and electrochemical methods is in the order of 105. The binding stoichiometry was investigated using spectroscopic techniques and corresponded to a ratio of 1: 1. Fluorescence titration results reveal that Cu‐complex is quenched in the presence of G‐quadruplex DNA. Analysis of the fluorescence emission at different temperatures shows that ΔH° > 0, ΔS° > 0 and ΔG° < 0, and indicates that hydrophobic interactions played a major role in the binding processes. MD simulation results suggested that this ligand could stabilize the G‐quadruplex structure. An optimized docked model of the G‐quadruplex–ligand mixture confirmed the experimental results. Based on the results, we conclude that Cu‐complex as an anticancer candidate can bind and stabilize the G‐quadruplex DNA structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The granule morphology, microstructure, and thermal properties of micronized cassava starch prepared by a vacuum ball-grinding machine were investigated. Scanning electron microscopy (SEM) analysis indicated that the morphology of starch granule changes during the ball-grinding treatment. Differential scanning calorimetry (DSC) analysis indicated that the maximum peak temperature (Tp) of the gelatinization process, the glass transition (Tg), and peak height index (PHI) for the starch granules decreased when the size of micronized starch granules was reduced. When the size of starch granules was reduced beyond 9.11 μm, they have a tendency to agglomerate and their ΔH were increased. The granule size has a significant effect on the gelatinization properties of cassava starch. This study will provide useful information of the micronized starch for its potential industrial application.  相似文献   

8.
The kinetics of binding of the cationic surfactant cetyltrimethyl ammonium bromide with the Na salt of carboxymethyl cellulose was studied by the electrometric method using cetyltrimetlyl ammonium+ (CTA+) ion-selective polyvinyl chloride membrane electrode. The binding process followed the first-order kinetics and occurred in three stages. Its affinity increased with increasing CTA bromide concentration and decreased with ionic strength. The activation process comprised moderate E and ΔH and negative ΔS for all three stages with a ΔH < TδS trend proving it to be entropy controlled. The ΔG values followed the trend ΔG < ΔG < ΔG (in accordance with k1 > k2 > k3). The enthalpies (ΔH) and entropies (ΔS) of activation followed a systematic and interdependent trend. The multiple-stage binding kinetics is grossly comparable with the kinetics of binding of proteins to solid surfaces. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Puerarin belongs to one of the most familiar tradition medicines of China, but adverse effects of puerarin during the clinical treatment have been found for years, the mechanisms of which remain unclear. In this study, toxic mechanisms of puerarin on the structure and function of catalase were studied by multiple spectroscopic techniques, isothermal titration calorimetric measurement, and molecular docking methods in vitro. Results showed puerarin could inhibit the activity of catalase due to direct interactions between puerarin and catalase, resulting in conformational and functional changes of the enzyme. To be specific, puerarin statically quenched catalase fluorescence, bound into the active site channel of catalase, hindered the path of the catalytic substrate (H2O2), affected its skeleton conformation and secondary structure, and interacted with the enzymatically related residues through hydrophobic interactions (ΔH > 0 and ΔS > 0) spontaneously (ΔG < 0). This study illustrates potential adverse effects of puerarin, which should catch more attentions during the clinical diagnosis.  相似文献   

10.
Surface and subsurface litter fulfil many functions in the biogeochemical cycling of C and N in terrestrial ecosystems. These were explored using a microcosm study by monitoring dissolved inorganic nitrogen (DIN) (NH4 +–N?+?NO3 ?–N), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and fluxes in drainage water under ambient outdoor temperatures. Subsurface litter remarkably reduced the DIN concentrations in winter, probably by microbial N uptake associated with higher C:N ratio of added litter compared with soil at 10–25?cm depth. Fluxes of DIN were generally dominated by NO3 ?–N; but NH4 +–N strongly dominated DIN fluxes during freeze–thaw events. Appreciable concentrations of NH4 +–N were observed in the drainage from the acid grassland soils throughout the experiment, indicating NH4 +–N mobility and export in drainage water especially during freeze–thaw. Litter contributed substantially to DOC and DON production and they were correlated positively (p?<?0.01) for all treatments. DOC and DON concentrations correlated with temperature for the control (p?<?0.01) and surface litter (p?<?0.001) treatments and they were higher in late summer. The subsurface litter treatment, however, moderated the effect of temperature on DOC and DON dynamics. Cumulative N species fluxes confirmed the dominance of litter as the source of DON and DOC in the drainage water. DON constituted 42, 46 and 62% of cumulative TDN flux for control, surface litter and subsurface litter treatments respectively.  相似文献   

11.
This study investigated the effect of aging rice on the freeze–thaw stability of rice flour gels since repeated freeze–thaw cycles can lead to reduced food quality. A rice grain cultivar called ‘Khoa Dawk Mali 105’ was aged for three different time periods, ranging from 0 to 12 months. Rice gels made from the aged rice were then freeze–thawed for up to 5 cycles. Repeated freeze–thaw cycles lead to an increase in syneresis values and hardness with increasing rice aging. Differential scanning calorimetry showed an increase in the enthalpy of melting of the amylose–lipid complex after 5 freeze–thaw cycles and an increase in peak gelatinization temperature and gelatinization enthalpy with longer rice aging. Moreover, aging length of the rice correlated significantly with a decrease in peak viscosity and breakdown but also an increase in final viscosity and setback. These results demonstrate that aging the rice reduced the freeze–thaw stability of the rice flour gels.  相似文献   

12.
All life requires energy to drive metabolic reactions such as growth and cell maintenance; therefore, fluctuations in energy availability can alter microbial activity. There is a gap in our knowledge concerning how energy availability affects the growth of extreme chemolithoautotrophs. Toward this end, we investigated the growth of thermoacidophile Acidianus ambivalens during sulfur oxidation under aerobic to microaerophilic conditions. Calorimetry was used to measure enthalpy (ΔHinc) of microbial activity, and chemical changes in growth media were measured to calculate Gibbs energy change (ΔGinc) during incubation. In all experiments, Gibbs energy was primarily dissipated through the release of heat, which suggests enthalpy‐driven growth. In microaerophilic conditions, growth was significantly more efficient in terms of biomass yield (defined as C‐mol biomass per mole sulfur consumed) and resulted in lower ΔGinc and ΔHinc. ΔGinc in oxygen‐limited (OL) and oxygen‐ and CO2‐limited (OCL) microaerophilic growth conditions resulted in averages of ?1.44 × 103 kJ/C‐mol and ?7.56 × 102 kJ/C‐mol, respectively, and average ΔHinc values of ?1.11 × 105 kJ/C‐mol and ?4.43 × 104 kJ/C‐mol, respectively. High‐oxygen experiments resulted in lower biomass yield values, an increase in ΔGinc to ?1.71 × 104 kJ/C‐mol, and more exothermic ΔHinc values of ?4.71 × 105 kJ/C‐mol. The observed inefficiency in high‐oxygen conditions may suggest larger maintenance energy demands due to oxidative stresses and a preference for growth in microaerophilic environments.  相似文献   

13.
14.
Samples of epichlorohydrin crosslinked potato starch were prepared by using a high ratio of starch to water and alkali concentration below the gelatinization level. This yielded crosslinked samples that were partially crystalline, and where the number of crosslinks could be varied between 1 and 20 crosslinks per 100 anhydroglucose units. The degree of swelling varied regularly with degree of crosslinking, and the molecular weight between crosslinks Mc as derived from swelling data in a good swelling agent compared favorably with Mc derived from chemical analysis. From the heat of gelatinization of the crosslinked starches, as observed in a differential scanning calorimeter, for gelatinization in glycerol, water, and dimethylsulfoxide, a model for the gel state of the crosslinked starch is proposed. It is concluded that the entropy of melting is the determining factor in establishing the temperature of gelatinization.  相似文献   

15.

Main conclusion

Expression of amylosucrase in potato resulted in larger starch granules with rough surfaces and novel physico-chemical properties, including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility. Starch is a very important carbohydrate in many food and non-food applications. In planta modification of starch by genetic engineering has significant economic and environmental benefits as it makes the chemical or physical post-harvest modification obsolete. An amylosucrase from Neisseria polysaccharea fused to a starch-binding domain (SBD) was introduced in two potato genetic backgrounds to synthesize starch granules with altered composition, and thereby to broaden starch applications. Expression of SBD–amylosucrase fusion protein in the amylose-containing potato resulted in starch granules with a rough surface, a twofold increase in median granule size, and altered physico-chemical properties including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility. These effects are possibly a result of the physical interaction between amylosucrase and starch granules. The modified larger starches not only have great benefit to the potato starch industry by reducing losses during starch isolation, but also have an advantage in many food applications such as frozen food due to its extremely high freeze–thaw stability.  相似文献   

16.
Starch obtained from yellow and white plantain varieties were subjected to proximate analysis, physicochemical and rheological characterization in order to evaluate their properties. Yellow plantain variety gave higher yield of starch than the white variety. The two varieties differed in the purity of starch extract; white plantain starch contained: ash (1.09%), protein (0.640%) and fat (0.276%) while yellow plantain starch contained: ash (0.95%), protein (0.325%) and fat (0.403%). The amylose content of yellow plantain starch (24.36% (apparent), 26.13% (total)) was similar to that of white plantain starch (24.24% (apparent), 26.01% (total)). Scanning electron microscopy revealed bimodal irregular shaped granules (3.74–7.00 and 10.00–33.00 μm) in white plantain starch and elliptical granules (11.22–41.00 μm) in yellow plantain starch. Both starches differed markedly in their physicochemical properties. Their differences in gelatinization temperature (yellow plantain, 64.99–73.90 °C; white plantain, 68.08–77.15 °C), swelling and solubility patterns, and pasting characteristics indicated that yellow plantain starch had weaker granule architecture compared with white plantain starch. Further evidence of differences in properties was obtained from flow and viscoelastic properties of the starch gels, paste clarity and freeze–thaw stability.  相似文献   

17.
Starch Measurement in Plant Tissue Using Enzymatic Hydrolysis   总被引:10,自引:0,他引:10  
This work explored completeness of starch hydrolysis in situ in relation to degree of gelatinization, starch content of tissue, evailable enzyme activity, and time allowed for hydrolysis. Maximum hydrolysis of starch in lyophilized red oak (Quercus rubra L.) root tissue with purified Diazyme (amyloglucosidase) or Clarase (Takadiastase) required high enzyme activity (2.4 U Diazyme or 48 U Clarase per mg starch). Results suggested that at least 70 U Clarase or 5 U Diazyme should be used per mg starch in routine analyses. Neither prolonging gelatinization (more than 15 min) nor hydrolysis (more than 24 to 48 lh) offset inadequate starch hydrolysis caused by insufficient enzyme activity. Starch was completely hydrolyzed in situ after 48 h without gelatinization by 5 U of Diazyme per mg starch. Tissue weight (5 to 100 mg) had no effect on starch hydrolysis by sufficient enzyme. Methanol: chloroform: water (12:5:3 by volume) freed tissues of solubles before starch hydrolysis. No interference with the glucose oxidase analysis of hydrolysates was encountered. In addition, the pigment free methanol–water fractions (soluble sugars, amino acids, organic acids) and chloroform fractions (lipids and pigments) were available or further analysis. Results obtained with red oak were verified with issue from other species such as jack pine (Pinus banksiana lamb.) and white spruce (Picea glauca (Moench) Voss). The resulting technique simply and reliably measured less than 5% starch in 5 mg lyophilized tissue, with a minimum of sample manipulation.  相似文献   

18.
The possibility of determining the free energy of stabilization ΔG0 of native DNA structure with the help of calorimetric data on heats ΔH of transition from the native to denaturated state is considered. Results of microcalorimetric measurements of heats of denaturation of T2 phage DNA at, different values of pH and ionic strength of solution are given. Values of free energy of stabilization of the DNA native structure ΔG0 under various conditions have been obtained. It is shown that under conditions close to physiological ΔG0 approaches 1200 cal/mole per base pair.  相似文献   

19.
Unstable snow cover and more frequent freeze–thaw events have been predicted for montane areas in southern Norway, where stable winters are common today. These systems are important contributors to the flux of carbon (C) and nitrogen (N) to air and water. Here we quantify and compare the effects of freeze–thaw on C and N release from soils collected below Calluna, Molinia or Sphagnum. Intact organic soil cores were subjected to four different freeze–thaw regimes for four consecutive 2‐week periods: (1) slow cycling (SC) with one long freezing event during each 2‐week period, (2) fast cycling (FC) with four short freezing events during each 2‐week period, (3) permanent frost (PF) and (4) permanent thaw (PT). The freezing temperature was −5 °C and the thawing temperature was 5 °C. Before start of treatment, at the end of each 2‐week period, and during postincubation periods, carbon dioxide (CO2) emission as well as leachable dissolved organic C (DOC), dissolved organic N (DON), ammonium (NH4), nitrate (NO3) and absorbance at 254 nm were measured. In soils from all three vegetations, PF increased the release of CO2, DOC, DON and NH4 compared with PT. SC caused some scattered effects whereas FC only resulted in some increase in NO3 release below Molinia. Generally, the emission of CO2 and leaching of DOC, DON and NH4 increased in the following order: Sphagnum < Calluna < Molinia. The release of NO3 was greatest below Calluna. Our data suggest that vegetation cover and composition seem at least as important as increased soil frost for future winter fluxes of CO2, DOC, DON and dissolved inorganic N (DIN) from the soil to air and water. The freezing period needs to be sufficiently long to give significant effects.  相似文献   

20.
Nitrogen mineralization, a main way that soil organic nitrogen converts to mineral nitrogen, is one of the key processes in soil nitrogen cycle. The mineral nitrogen has an important role in plant growth in the growing season. It has been widely accepted that soil freezing in winter can kill a number of microorganisms, weakening soil nitrogen mineralization. However, more and more recent studies have documented that soil microorganisms still have high activity during the deep freezing period, and obvious nitrogen mineralization in winter. Seasonal freeze–thaw cycle is a common phenomenon in the subalpine/alpine forest region, which may have a strong effect on soil ecological processes. Furthermore, the changing pattern of seasonal freeze–thaw cycles might have a significant influence on soil nitrogen mineralization in this region in the scenarios of global warming. As yet, little attention has been given to nitrogen mineralization of soil organic layer as affected by changed seasonal freeze–thaw pattern, although the increasing studies have demonstrated that winter warming might give strong effects on the litter decomposition and microbial activity in the subalpine/alpine forest regions. Therefore, a method of intact soil core incubation in combination with natural environmental gradient was employed by transferring forest soils from 3582 m (A1) of altitude to 3298 m (A2) of altitude and 3023 m (A3) of altitude in the subalpine/alpine forests of western Sichuan, respectively. The amounts and rates of net nitrogen mineralization in soil organic layer were measured. The incubation period included the growing season and the freeze–thaw season from May 24, 2010 to April 19, 2011. The results suggested that significant net nitrogen mineralization was only observed in soil organic layer at low altitude (A3) during the whole incubation period. Forest soils at higher altitudes (A1 and A2) showed obvious soil nitrogen immobilization. In comparison with the growing season which showed remarkable nitrogen immobilization characteristic, the freeze–thaw season showed obvious nitrogen mineralization at lower altitudes (A2 and A3). In contrast, the nitrogen immobilization amounts at high altitude (A1) in freeze–thaw period were less than those in the growing season. Besides, the maximum of net nitrogen mineralization amounts and rates at high altitude (A1) in soil organic layer mainly occurred in the late stage of growing season and the onset of freezing, soil nitrogen mineralization at the middle altitude (A2) mainly occurred in the onset of freezing and the deep freezing period, while the highest amount and rate of net nitrogen mineralization at low altitude (A3) occurred in the early stage of thawing and the late stage of growing season. Furthermore, the amount and rate of soil net nitrogen mineralization during the freeze–thaw season were increasing with the decrease of altitude, which correlated with soil freeze–thaw cycle and freezing process at different altitudes. These results indicated that increasing soil temperature in the future could not only significantly enhance soil nitrogen mineralization in the freeze–thaw season, but also improve soil nitrogen mineralization by increasing freeze–thaw cycle times and shortening freeze–thaw period. However, the processes were significantly influenced by soil micro-environment of subalpine/alpine forest regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号