首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous research by this author and others has indicated that species-level differentiation within the hominines can be detected in the femur. The femoral shaft of Homo erectus, relative to H. sapiens, demonstrates small anteroposterior diameters, a distally placed point of minimum shaft breadth, and increased cortical thickness resulting in medullary stenosis. This pattern has been identified in specimens from Choukoutien (I and IV), Olduvai (OH 28), and Lake Turkana (KNM ER 737). Findings reported here include anatomical comparisons and univariate and multivariate analyses based on external and internal shaft morphology. These results indicate that the femoral pattern characteristic of H. erectus can be identified in KNM ER 1481a recovered at Lake Turkana below the KBS tuff. Recent dating of that tuff indicates a date of ca. 1.8 mya, thereby yielding a date for KNM ER 1481a of ? 2.0 mya. Known H. erectus femora extend over a broad span and yet show very low, variability; this pronounced stasis would strongly suggest that, at least in this portion of the postcranium, H. erectus was in a period of profound morphological stasis.  相似文献   

2.
A complex of traits in the femur and pelvis of Homo ereclus and early “erectus-like” specimens has been described, but never satisfactorily explained. Here the functional relationships between pelvic and femoral structure in humans are explored using both theoretical biomechanical models and empirical tests within modern samples of diverse body form (Pecos Amerindians, East Africans). Results indicate that a long femoral neck increases mediolateral bending of the femoral diaphysis and decreases gluteal abductor and hip joint reaction forces. Increasing biacetabular breadth along with femoral neck length further increases M-L bending of the femoral shaft and maintains abductor and joint reaction forces at near “normal” levels. When compared to modern humans, Homo erectus and early “erectus-like” specimens are characterized by a long femoral neck and greatly increased M-L relative to A-P bending strength of the femoral shaft, coupled with no decrease in hip joint size and a probable increase in abductor force relative to body size. All of this strongly suggests that biacetabular breadth as well as femoral neck length was relatively large in early Homo. Several features preserved in early Homo partial hip bones also indicate that the true (lower) pelvis was very M-L broad, as well as A-P narrow. This is similar to the lower pelvic shape of australopithecines and suggests that nonrotational birth, in which the newborn's head is oriented transversely through the pelvic outlet, characterized early Homo as well as Australopithecus. Because M-L breadth of the pelvis is constrained by other factors, this may have limited increases in cranial capacity within Homo until rotational birth was established during the late Middle Pleistocene. During or after the transition to rotational birth biacetabular breadth decreased, reducing the body weight moment arm about the hip and allowing femoral neck length (abductor moment arm) to also decrease, both of which reduced M-L bending of the proximal femoral shaft. Variation in femoral structural properties within early Homo and other East African Early Pleistocene specimens has several taxonomic and phylogenetic implications. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The proximal half of a hominid femur was recovered from deep within a paleokarst feature at the Berg Aukas mine, northern Namibia. The femur is fully mineralized, but it is not possible to place it in geochrono logical context. It has a very large head, an exceptionally thick diaphyseal cortex, and a very low collodiaphyseal angle, which serve to differentiate it from Holocene homologues. The femur is not attributable to Australopithecus, Paranthropus, or early Homo (i.e., H. habilis sensu lato). Homo erectus femora have a relatively longer and AP flatter neck, and a shaft that exhibits less pilaster than the Berg Aukas specimen. Berg Aukas also differs from early modern femora in several features, including diaphyseal cortical thickness and the degree of subtrochanteric AP flattening. The massive diaphyseal cortex of Berg Aukas finds its closest similarity within archaic H. sapiens (e.g., Castel di Guido) and H. erectus (e.g., KNM-ER 736) samples. It has more cortical bone at midshaft than any other specimen, although relative cortical thickness and the asymmetry of its cross-sectional disposition at this level are comparable with those of other Pleistocene fem ora. The closest morphological comparisons with Berg Aukas are in archaic (i.e., Middle Pleistocene) H. sapiens and Neandertal samples. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The interspecific allometry of five measures of total cranial bone thickness is examined in 10 extant catarrhine genera and two fossil hominid samples representing A. africanus and Asian H. erectus. Analysis of the modern sample shows that most interspecific variation in vault thickness can be accounted for by variation in body size. Correlation values are moderate to high (r = 0.75–0.98), and all variables exhibit positive allometry. The bone thickness:body mass relationship of modern humans broadly conforms with that of other primates. However, in the distribution of relative thickness throughout the skull, H. sapiens is distinguished by relative thickening of the parietal and extreme relative thinning of the temporal squama. The bone thickness:body mass relationship in the two early hominid species is examined using published mean body weight estimates generated from post-cranial predictor variables. A. africanus exhibits great similarity to modern humans in its relation to the catarrhine regression data and in the distribution of relative thickness throughout the skull. H. erectus also shows a modern human-like pattern in the distribution of its relative thickness; however, its bone thickness:body mass relationship is dissimilar to that displayed by all other taxa, including the other hominid species. On the basis of these results, it is suggested that the published body weight estimate assigned to H. erectus greatly underestimates actual mean body size for Asian members of this species. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Temporal trends in postcranial robusticity within the genus Homo are explored by comparing cross-sectional diaphyseal and articular properties of the femur, and to a more limited extent, the humerus, in samples of Recent and earlier Homo. Using both theoretical mechanical models and empirical observations within Recent humans, scaling relationships between structural properties and bone length are developed. The influence of body shape on these relationships is considered. These scaling factors are then used to standardize structural properties for comparisons with pre-Recent Homo (Homo sp. and H. erectus, archaic H. sapiens, and early modern H. sapiens). Results of the comparisons lead to the following conclusions: 1) There has been a consistent, exponentially increasing decline in diaphyseal robusticity within Homo that has continued from the early Pleistocene through living humans. Early modern H. sapiens are closer in shaft robusticity to archaic H. sapiens than they are to Recent humans. The increase in diaphyseal robusticity in earlier Homo is a result of both medullary contraction and periosteal expansion relative to Recent humans. 2) There has been no similar temporal decline in articular robusticity within Homo–relative femoral head size is similar in all groups and time periods. Thus, articular to shaft proportions are different in pre-Recent and Recent Homo. 3) These findings are most consistent with a mechanical explanation (declining mechanical loading of the postcranium), that acted primarily through developmental rather than genetic means. The environmental (behavioral) factors that brought about the decline in postcranial robusticity in Homo are ultimately linked to increases in brain size and cultural-technological advances, although changes in robusticity lag behind changes in cognitive capabilities. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Recently, nomina such as “Homo heidelbergensis” and “H. ergaster” have been resurrected to refer to fossil hominids that are perceived to be specifically distinct from Homo sapiens and Homo erectus. This results in a later human fossil record that is nearly as speciose as that documenting the earlier history of the family Hominidae. However, it is agreed that there remains only one extant hominid species: H. sapiens. Has human taxonomic diversity been significantly pruned over the last few hundred millennia, or have the number of taxa been seriously overestimated? To answer this question, the following null hypothesis is tested: polytypism was established relatively early and the species H. erectus can accommodate all spatio-temporal variation from ca. 1.7 to 0.5 Ma. A disproof of this hypothesis would suggest that modern human polytypism is a very recent phenomenon and that speciation throughout the course of human evolution was the norm and not the exception. Cranial variation in a taxonomically mixed sample of fossil hominids, and in a modern human sample, is analyzed with regard to the variation present in the fossils attributed to H. erectus. The data are examined using both univariate (coefficient of variation) and multivariate (determinant) analyses. Employing randomization methodology to offset the small size and non-normal distribution of the fossil samples, the CV and determinant results reveal a pattern and degree of variation in H. erectus that most closely approximates that of the single species H. sapiens. It is therefore concluded that the null hypothesis cannot be rejected. © 1993 Wiley-Liss, Inc.  相似文献   

7.
An increasing number of claims place hominids outside Africa and deep in Southeast Asia at about the same time that Homo erectus first appears in Africa. The most complete of the early specimens is the partial child's calvaria from Mojokerto (Perning I), Java, Indonesia. Discovered in 1936, the child has been assigned to Australopithecus and multiple species of Homo, including H. modjokertensis, and given developmental ages ranging from 1–8 years. This study systematically assesses Mojokerto relative to modern human and fossil hominid growth series and relative to adult fossil hominids. Cranial base and vault comparisons between Mojokerto and H. sapiens sapiens (Hss) (n = 56), Neandertal (n = 4), and H. erectus (n = 4) juveniles suggest a developmental age range between 4 and 6 years. This range is based in part on new standards for assessing the relative development of the glenoid fossa. Regression analyses of vault arcs and chords indicate that H. erectus juveniles have more rounded frontals and less angulated occipitals than their adult counterparts, whereas Hss juveniles do not show these differences relative to adults. The growth of the cranial superstructures and face appear critical to creating differences in vault contours between H. erectus and Hss. In comparison with adult H. erectus and early Homo (n = 27) and adult Hss (n = 179), the Mojokerto child is best considered a juvenile H. erectus on the basis of synapomorphies of the cranial vault, particularly a metopic eminence and occipital torus, as well as a suite of characters that describe but do not define H. erectus, including obelion depression, supratoral gutter, postorbital constriction, mastoid fissure, lack of sphenoid contribution to glenoid fossa, and length and breadth ratios of the temporomandibular joint. Mojokerto is similar to other juvenile H. erectus in the degree of development of its cranial superstructures and its vault contours relative to adult Indonesian specimens. The synapomorphies which Mojokerto shares with H. erectus are often considered autapomorphies of Asian H. erectus and confirm the early establishment and long-term continuity of the Asian H. erectus bauplan. This continuity does not, however, necessarily reflect on the pattern of origin of modern humans in the region. Am J Phys Anthropol 102:497–514, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
All early (Pliocene–Early Pleistocene) hominins exhibit some differences in proximal femoral morphology from modern humans, including a long femoral neck and a low neck‐shaft angle. In addition, australopiths (Au. afarensis, Au. africanus, Au. boisei, Paranthropus boisei), but not early Homo, have an “anteroposteriorly compressed” femoral neck and a small femoral head relative to femoral shaft breadth. Superoinferior asymmetry of cortical bone in the femoral neck has been claimed to be human‐like in australopiths. In this study, we measured superior and inferior cortical thicknesses at the middle and base of the femoral neck using computed tomography in six Au. africanus and two P. robustus specimens. Cortical asymmetry in the fossils is closer overall to that of modern humans than to apes, although many values are intermediate between humans and apes, or even more ape‐like in the midneck. Comparisons of external femoral neck and head dimensions were carried out for a more comprehensive sample of South and East African australopiths (n = 17) and two early Homo specimens. These show that compared with modern humans, femoral neck superoinferior, but not anteroposterior breadth, is larger relative to femoral head breadth in australopiths, but not in early Homo. Both internal and external characteristics of the australopith femoral neck indicate adaptation to relatively increased superoinferior bending loads, compared with both modern humans and early Homo. These observations, and a relatively small femoral head, are consistent with a slightly altered gait pattern in australopiths, involving more lateral deviation of the body center of mass over the stance limb. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Since their discovery, Neanderthals have been described as having a marked degree of anteroposterior curvature of the femoral shaft. Although initially believed to be pathological, subsequent discoveries of Neanderthal remains lead femoral curvature to be considered as a derived Neanderthal feature. A recent study on Neanderthals and middle and early Upper Palaeolithic modern humans found no differences in femoral curvature, but did not consider size-corrected curvature. Therefore, the objectives of this study were to use 3D morphometric landmark and semi-landmark analysis to quantify relative femoral curvature in Neanderthals, Upper Palaeolithic and recent modern humans, and to compare adult bone curvature as part of the overall femoral morphology among these populations.Comparisons among populations were made using geometric morphometrics (3D landmarks) and standard multivariate methods. Comparative material involved all available complete femora from Neanderthal and Upper Palaeolithic modern human, archaeological (Mesolithic, Neolithic, Medieval) and recent human populations representing a wide geographical and lifestyle range. There are significant differences in the anatomy of the femur between Neanderthals and modern humans. Neanderthals have more curved femora than modern humans. Early modern humans are most similar to recent modern humans in their anatomy. Femoral curvature is a good indicator of activity level and habitual loading of the lower limb, indicating higher activity levels in Neanderthals than modern humans. These differences contradict robusticity studies and the archaeological record, and would suggest that femoral morphology, and curvature in particular, in Neanderthals may not be explained by adult behavior alone and could be the result of genetic drift, natural selection or differences in behavior during ontogeny.  相似文献   

10.
New fossil femora attributed to Australopithecus from East Rudolf, Kenya, form the basis for a three-dimensional reconstruction of a complete femur. The reconstruction and the known fossils are compared with the femora of Homo sapiens. Although many of the features of the fossil bones fall within the overall ranges to be found in modern man, there seems, nevertheless, to be a distinctive total pattern in the femoral anatomy of Australopithecus. Biomechanical explanations for this pattern may be possible when other postcranial bones can be reconstructed with the same degree of certainty as the femur.  相似文献   

11.
The recent discovery of new postcranial fossils, particularly associated body parts, of several Plio-Pleistocene hominids provides a new opportunity to assess body size in human evolution.1 Body size plays a central role in the biology of animals because of its relationship to brain size, feeding behavior, habitat preference, social behavior, and much more. Unfortunately, the prediction of body weight from fossils is inherently inaccurate because skeletal size does not reflect body size exactly and because the fossils are from species having body proportions for which there are no analogues among modern species. The approach here is to find the relationship between body size and skeletal size in ape and human specimens of known body weight at death and to apply this knowledge to the hominid fossils, using a variety of statistical methods, knowledge of the associated partial skeletons of the of early hominids, formulae derived from a modern human sample, and, finally, common sense. The following modal weights for males and females emerge: Australopithecus afarensis, 45 and 29 kg; A. africanus, 41 and 30 kg; A. robustus, 40 and 32 kg; A. boisei, 49 and 34 kg; H. habilis, 52 and 32 kg. The best known African early H. erectus were much larger with weights ranging from 55 kg on up. These estimates imply that (1) in the earliest hominid species and the “robust” australopithecines body sizes remained small relative to modern standards, but between 2.0 and 1.7 m.y.a. there was a rapid increase to essentially modern body size with the appearance of Homo erectus; (2) the earliest species had a degree of body size sexual dimorphism well above that seen in modern humans but below that seen in modern gorillas and orangs which implies (along with other evidence) a social organization characterized by kin-related, multi-male groups with females who were not kin-related; (3) relative brain sizes increased through time; (4) there were two divergent trends in relative cheek-tooth size—a steady increase through time from A. afarensis to A. africanus to the “robust” australopithecines, and a decrease beginning with H. habilis to H. erectus to H. sapiens.  相似文献   

12.
Confusion exists regarding the developmental ages of numerous Asian and southeast Asian Homo erectus fossils because of Weidenreich's contention that Pithecanthropus fused its sutures prematurely relative to H. sapiens. I reevaluate the cranial developmental ages of the Ngandong “juveniles” (2, 5, 8, 9) based on a series of indicators of youth (superstructure development, suture development/fusion, and cranial thickness) and cranial contours. The Ngandong juveniles are compared with H. sapiens adults (n = 281) and subadults (n = 81) and with Ngandong and other H. erectus adults (n = 20) and subadults (n = 4). Cranial contours are assessed using bivariate plots of arc vs. chord measurements. All indicators suggest that Ngandong 5 and 9 are adults, whereas Ngandong 8 is an older juvenile or young adult and Ngandong 2 is a juvenile with a developmental age range of greater than 6 and less than 11 years. In addition, adult cranial contours and the pattern of contour development are similar between Ngandong adults and other H. erectus adults. There is nothing in the cranial contour data to suggest that Ngandong is, despite a relatively large brain, transitional in vault shape between H. erectus and H. sapiens. Am J Phys Anthropol 108:223–236, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

13.
Brain development in Homo erectus is a subject of great interest, and the infant calvaria from Mojokerto, Indonesia, has featured prominently in these debates. Some researchers have suggested that the pattern of brain development in H. erectus resembled that of non-human apes, while others argue for a more human-like growth pattern. In this study, we retested hypotheses regarding brain ontogeny in H. erectus using new methods (resampling), and data from additional H. erectus crania. Our results reveal that humans achieve 62% (±10%) and chimpanzees 80% (±9%) of their adult endocranial volume by 0.5–1.5 years of age. Using brain mass data, humans achieve on average 65% and chimpanzees 81% of adult size by 0.5–1.5 years. When compared with adult H. erectus crania (n = 9) from Indonesian sites greater than 1.2 million years old, Mojokerto had reached ∼70% of its adult cranial capacity. Mojokerto thus falls almost directly between the average growth in humans and chimpanzees, and well within the range of both. We therefore suggest that brain development in H. erectus cannot be dichotomized as either ape-like or human-like; it was H. erectus-like. These data indicate that H. erectus may have had a unique developmental pattern that should be considered as an important step along the continuum of brain ontogeny between apes and humans.  相似文献   

14.
Discovery of the first complete Early Pleistocene hominin pelvis, Gona BSN49/P27, attributed to Homo erectus, raises a number of issues regarding early hominin body size and shape variation. Here, acetabular breadth, femoral head breadth, and body mass calculated from femoral head breadth are compared in 37 early hominin (6.0-0.26 Ma) specimens, including BSN49/P27. Acetabular and estimated femoral head sizes in the Gona specimen fall close to the means for non-Homo specimens (Orrorin tugenesis, Australopithecus africanus, Paranthropus robustus), and well below the ranges of all previously described Early and Middle Pleistocene Homo specimens. The Gona specimen has an estimated body mass of 33.2 kg, close to the mean for the non-Homo sample (34.1 kg, range 24-51.5 kg, n = 19) and far outside the range for any previously known Homo specimen (mean = 70.5 kg; range 52-82 kg, n = 17). Inclusion of the Gona specimen within H. erectus increases inferred sexual dimorphism in body mass in this taxon to a level greater than that observed here for any other hominin taxon, and increases variation in body mass within H. erectus females to a level much greater than that observed for any living primate species. This raises questions regarding the taxonomic attribution of the Gona specimen. When considered within the context of overall variation in body breadth among early hominins, the mediolaterally very wide Gona pelvis fits within the distribution of other lower latitude Early and Middle Pleistocene specimens, and below that of higher latitude specimens. Thus, ecogeographic variation in body breadth was present among earlier hominins as it is in living humans. The increased M-L pelvic breadth in all earlier hominins relative to modern humans is related to an increase in ellipticity of the birth canal, possibly as a result of a non-rotational birth mechanism that was common to both australopithecines and archaic Homo.  相似文献   

15.
A quantitative analysis that employs randomization methods and distance statistics has been undertaken in an attempt to clarify the taxonomic affinities of the partial Homo cranium (SK 847) from Member 1 of the Swartkrans Formation. Although SK 847 has been argued to represent early H. erectus, exact randomization tests reveal that the magnitude of differences between it and two crania that have been attributed to that taxon (KNM-ER 3733 and KNM-WT 15000) is highly unlikely to be encountered in a modern human sample drawn from eastern and southern Africa. Some of the variables that differentiate SK 847 from the two early H. erectus crania (e. g., nasal breadth, frontal breadth, mastoid process size) have been considered to be relevant characters in the definition of that taxon. Just as the significant differences between SK 847 and the two early H. erectus crania make attribution of the Swartkrans specimen to that taxon unlikely, the linkage of SK 847 to KNM-ER 1813, and especially Stw 53, suggests that the Swartkrans cranium may have its closest affinity with H. habilis sensu lato. Differences from KNM-ER 1813, however, hint that the South African fossils may represent a species of early Homo that has not been sampled in the Plio-Pleistocene of eastern Africa. The similarity of SK 847 and Stw 53 may support faunal evidence which suggests that Sterkfontein Member 5 and Swartkrans Member 1 are of similar geochronological age. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Fossil Humankind and Other Anthropoid Primates of China   总被引:2,自引:1,他引:1  
More than 70 sites have yielded human fossils in China. They are attributed to Homo sapiens erectus and Homo sapiens sapiens. The earliest one is possibly about 1.7 Ma. A series of common morphological features, including shovel-shaped incisors and flatness of the face, characterize them. There is a morphological mosaic between H. s. erectus and H. s. sapiens in China. The existence of common features and the morphological mosaic suggest continuity of human evolution in China. That there are a few features which are more commonly seen in the Neanderthal lineage, occurring in a few Chinese fossil skulls, probably suggests gene flow between China and the West. Based on them, in 1998 I proposed an hypothesis—continuity with hybridization—for human evolution in China. The hypothesis is supported by paleolithic archeology, and it supports the multiregional evolution hypothesis of modern human origins. The anatomically modern humans of East Asia originated most probably in China. Although some nonhuman anthropoid primates of China—Gigantopithecus, Sivapithecus, Ramapithecus and Lufengpithecus—have been suggested as the direct ancestors of human beings, the discovery of more specimens and further studies do not support these suggestions. Therefore, it is most probable that the transition between apes and humans did not occur in China.  相似文献   

17.
Comparative work among nonhominid primates has demonstrated that the basicranium becomes more flexed with increasing brain size relative to basicranial length and as the -upper and lower face become more ventrally deflected (Ross and Ravosa [1993] Am. J. Phys. Anthropol. 91:305–324). In order to determine whether modern humans and fossil hominids follow these trends, the cranial base angle (measure of basicranial flexion), angle of facial kyphosis, and angle of orbital axis orientation were measured from computed tomography (CT) scans of fossil hominids (Sts 5, MLD 37/38, OH9, Kabwe) and lateral radiographs of 99 extant humans. Brain size relative to basicranial length was calculated from measures of neurocranial volume and basicranial length taken from original skulls, radiographs, CT scans, and the literature. Results of bivariate correlation analyses revealed that among modern humans basicranial flexion and brain size/basicranial length are not significantly correlated, nor are the angles of orbital axis orientation and facial kyphosis. However, basicranial flexion and orbit orientation are significantly positively correlated among the humans sampled, as are basicranial flexion and the angle of facial kyphosis. Relative to the comparative sample from Ross and Ravosa (1993), all hominids have more flexed basicrania than other primates: Archaic Homo sapiens, Homo erectus, and Australopithecus africanus do not differ significantly from Modern Homo sapiens in their degree of basicranial flexion, although they differ widely in their relative brain size. Comparison of the hominid values with those predicted by the nonhominid reduced major-axis equations reveal that, for their brain size/basicranial length, Archaic and Modern Homo sapiens have less flexed basicrania than predicted. H. erectus and A. africanus have the degree of basicranial flexion predicted by the nonhominid reduced major-axis equation. Modern humans have more ventrally deflected orbits than all other primates and, for their degree of basicranial flexion, have more ventrally deflected orbits than predicted by the regression equations for hominoids. All hominoids have more ventrally deflected orbital axes relative to their palate orientation than other primates. It is argued that hominids do not strictly obey the trend for basicranial flexion to increase with increasing relative brain size because of constraints on the amount of flexion that do not allow it to decrease much below 90°. Therefore, if basicranial flexion is a mechanism for accommodating an expanding brain among non-hominid primates, other mechanisms must be at work among hominids. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The past decade has brought considerable debate on the subject of modern human origins. The nature of the transition from Homo erectus to archaic Homo sapiens to modern H. sapiens has been examined primarily in terms of the relative contribution of archaic populations to later moderns, both within and among geographic regions. The recent African origin model proposes that modern humans appeared first in Africa between 100,000 and 200,000 years ago, and then spread through the rest of the Old World, replacing preexisting populations.1–6 This model has been referred to by a variety of names, including “replacement”, “Garden of Eden”, “Noah's Ark”, and “out of Africa”. The recent African origin model contrasts with the multiregional model, which proposes a species-wide transition to modern humans throughout the Old World during the past million years or more.7–10 Indeed, some proponents of the multiregional model advocate placing Homo erectus and all subsequent species of Homo in the evolutionary species Homo sapiens.11 This contrasts with the view that there were multiple hominid species during the Middle Pleistocene. The debate continues.12,13 Although the multiregional model is often portrayed as proposing a simultaneous transition to anatomically modern humans in different geographic regions, it explicitly allows for varying degrees of continuity across time and space.10 This model, in the broad sense, does not rule out the possibility that modern human morphology appeared first in Africa and then spread through the rest of the Old World through gene flow. However, not all advocates of the multiregional model adhere to this specific subset of the general model.9 Comparison of the African and multiregional models is complicated by considering other, less extreme, hypotheses. Some versions of the recent African origin model imply a speciation event associated with the initial origin of modern humans. Another version, which suggests the possibility of some admixture between “moderns” leaving Africa and preexisting “archaics” elsewhere in the Old World,14,15 is similar to some variants of the multiregional model, which also suggest that modern morphology appeared first in Africa, but involved admixture with other Old World populations.16 The major difference between these views appears to be the extent of admixture, although the exact level is never specified. A further complication is the possibility that multiple dispersals from Africa produced a more complicated pattern of worldwide variation.17  相似文献   

19.
New brain endocast reconstructions of Homo erectus discoveries from Indonesia since 1963 (H. erectus VI, 1963; VII, 1965; VIII, 1969) have been made and their volumes determined. In addition, older discoveries (H. erectus I, 1891; II, 1937; IV, 1937–38) have been reendocast and reconstructed, and have yielded volumes considerably different from those previously published. This is particularly so in the case of Dubois's original discovery, which yields a volume of 940 ml rather than the widely quoted volume of 750 ml. In addition, a number of morphological observations regarding hemispheric asymmetries (petalias) are provided, which suggest a condition similar to modern Homo sapiens.  相似文献   

20.
The cortical bone distributions in the femoral necks of apes and humans differ as a result of different loading environments caused by the realignment of the hip abductor apparatus. Femoral neck cortical bone in extant humans is very thin superiorly and thicker inferiorly, while the cortical bone in apes tends to be more uniformly thick. The unique internal anatomy of extant humans allows inferences to be made about primary locomotor function from incomplete femora. Here the differences in cortical bone distributions are quantified using moment coefficient of skewness. Skewness coefficients at two locations along the neck of the 6 million years old African femoral specimen BAR 1002’00 were compared to samples of 9 extant adult humans and 10 adult chimpanzees. The skewness coefficients of cortical bone in the femoral neck of BAR 1002’00 are more similar to those of chimpanzees than to humans, although the contrast is less pronounced in the region closer to the neck-shaft junction than more proximally toward the femoral head; this pattern indicates that in at least one respect this specimen attributed to Orrorin tugenensis manifests structural features suggesting influences of a hip abductor apparatus that had not yet evolved to the same extent as in extant humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号