首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen-dependent xylitol metabolism in Pichia stipitis   总被引:1,自引:0,他引:1  
Pichia stipitis CBS 6054 was cultivated in chemostat cultures under aerobic and oxygen-limited conditions with xylitol alone, a mixture of xylitol and glucose and a mixture of xylitol and xylose. Xylitol metabolism was strictly respiratory and no ethanol was formed. Simultaneous feeding of xylitol and glucose and xylitol and xylose to oxygen-limited xylitol-pregrown cells resulted in ethanol formation. In vitro both pyruvate decarboxylase activity and alcohol dehydrogenase activity were present in cells metabolising xylitol under oxygen-limited conditions; however, this did not result in ethanol formation. Glucose, xylose and xylitol utilisation, respectively, were compared under anaerobic conditions with regard to growth rate, carbon source and oxygenation level during pre-cultivation. Irrespective of pre-growth conditions, xylitol was not metabolised under anaerobic conditions, whereas ethanol was formed from both xylose and glucose. Anaerobic xylose utilisation required induction of a xylose-utilising metabolic pathway during pre-cultivation. Received: 23 February 1999 / Received last revision: 20 July 1999 / Accepted: 1 August 1999  相似文献   

2.
Under anoxia, embryos of Artemia franciscana enter a state of quiescence. During this time protein synthesis is depressed, and continued degradation of proteins could jeopardize the ability to recover from quiescence upon return to favorable conditions. In this study, we developed an assay for monitoring ATP/ubiquitin-dependent proteolysis in order to establish the presence of this degradation mechanism in A. franciscana embryos, and to describe some characteristics that may regulate its function during anoxia-induced quiescence. For lysates experimentally depleted of adenylates, supplementation with ATP and ubiquitin stimulated protein degradation rates by 92 ± 17% (mean ± SE) compared to control rates. The stimulation by ATP was maximal at concentrations ≥11 μmol · l−1. In the presence of ATP and ubiquitin, ubiquitin-conjugated proteins were produced by lysates during the course of the 4-h assays, as detected by Western blotting. Acute acidification of lysates to values approximating the intracellular pH observed under anoxia completely inhibited ATP/ubiquitin-dependent proteolysis. Depressed degradation was also observed under conditions where net ATP hydrolysis occurred. These results suggest that ATP/ubiquitin-dependent proteolysis is markedly inhibited under cellular conditions promoted by anoxia. Inhibition of proteolysis during quiescence may be one critical factor that increases macromolecular stability, which may ultimately govern the duration of embryo survival under anoxia. Accepted: 2 November 1999  相似文献   

3.
Summary Cells of the cultured hamster cell line V79 were labeled with tritiated adenosine and incubated for up to 30 min in the presence of inhibitors of glycolysis and oxidative phosphorylation. These inhibitors were (a) 5 mM KCN plus 5 mM iodoacetate, (b) 5 mM KCN plus 5 mM KF, and (c) 15 mM KCN plus 15 mM KF. The fate of the tritium label was examined during incubation with inhibitors and also during subsequent incubation in growth medium in the absence of inhibitors. The tritiated ATP pool was found to decrease in cells incubated in the presence of any of the inhibitor combinations, but only in the presence of 15 mM KCN plus 15 mM KF was this pool decreased below the level of detection. After cells were incubated with KCN plus KF, a high level of ATP was recovered when the inhibitors were removed. Cells incubated with KCN plus iodoacetate retained depletion levels of ATP. Plating efficiency and trypan blue staining showed that KCN-KF treated cells retained viability, whereas KCN-iodoacetate treated cells did not. Cells were examined for ability to take up tritiated uridine before, during, and after depletion of ATP by incubation in the presence of 15 mM KCN plus 15 mM KF. These cells were found to have a variation in uridine uptake that was related directly to intracellular ATP level. Cells in which the ATP was very low exhibited little or no uridine uptake, whereas cells in which the ATP level was near normal exhibited normal uridine uptake. This work was supported in part by Grant GM24271 from the National Institutes of Health, Bethesda, Maryland.  相似文献   

4.
Dinitrophenol (1 x 10-5 M) has been found to inhibit anaerobic sodium transport by the isolated urinary bladder of the fresh water turtle. Concurrently, anaerobic glycolysis was stimulated markedly. However, tissue ATP levels diminished only modestly, remaining at approximately 75% of values observed under anaerobic conditions without DNP. The utilization of glucose (from endogenous glycogen) corresponded closely to that predicted from the molar quantities of lactate formed. Thus the glycolytic pathway was completed in the presence of DNP and if ATP were synthesized normally during glycolysis, synthesis should have been increased. On the other hand, the decrease in Na transport should have decreased ATP utilization. Oligomycin did not block sodium transport either aerobically or anaerobically, but ATP concentrations did decrease. When anaerobic glycolysis was blocked by iodoacetate, pyruvate did not sustain sodium transport thus suggesting that no electron acceptors were available in the system. Two explanations are entertained for the anaerobic effect of DNP: (a) Stimulation by DNP of plasma membrane as well as mitochondrial ATPase activity; (b) inhibition of a high energy intermediate derived from glycolytic ATP or from glycolysis per se. The arguments relevant to each possibility are presented in the text. Although definitive resolution is not possible, we believe that the data favor the hypothesis that there was a high energy intermediate in the anaerobic system and that this intermediate, rather than ATP, served as the immediate source of energy for the sodium pump.  相似文献   

5.
After addition of 5 mM sulfite or nitrite to glucose-metabolizing cells of Saccharomyces cerevisiae a rapid decrease of the ATP content and an inversely proportional increase in the level of inorganic phosphate was observed. The concentration of ADP shows only small and transient changes. Cells of the yeast mutant pet 936, lacking mitochondrial F1ATPase, after addition of 5 mM sulfite or nitrite exhibit changes in ATP, ADP and inorganic phosphate very similar to those observed in wild type cells. They key enzyme of glucose degradation, glyceraldehyde-3-phosphate dehydrogenase was previously shown to be the most sulfiteor nitrite-sensitive enzyme of the glycolytic pathway. This enzyme shows the same sensitivity to sulfite or nitrite in cells of the mutant pet 936 as in wild type cells. It is concluded that the effects of sulfite or nitrite on ATP, ADP and inorganic phosphate are the result of inhibition of glyceraldehyde-3-phosphate dehydrogenase and not of inhibition of phosphorylation processes in the mitochondria. Levels of GTP, UTP and CTP show parallel changes to ATP. This is explained by the presence of very active nucleoside monophosphate kinases which cause a rapid exchange between the nucleoside phosphates. The effects of the sudden inhibition of glucose degradation by sulfite or nitrite on levels of ATP, ADP and inorganic phosphate are discussed in terms of the theory of Lynen (1942) on compensating phosphorylation and dephosphorylation in steady state glucose metabolizing yeast.Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - Pi inorganic orthophosphate Dedicated to Prof. Dr. Hans Grisebach on the occasion of his sixtieth birthday  相似文献   

6.
After a short period of tolerance, living cells of Saccharomyces cerevisiae were irreversibly damaged by low concentrations of sulfite. The length of the period of tolerance and the rate of the damaging effect depended on the concentration on sulfite, pH-value, temperature, the physiological state of the cells, and incubation time.Inhibitors of protein synthesis and mitochondrial ATP synthesis did not alter the deleterious effect of sulfite on living cells. Furthermore, cell damage leading to inhibition of colony formation occured under aerobic as well as under anaerobic conditions.Prior to cell inactivation sulfite induced the formation of respiratory deficient cells.The active agent was shown to be SO2.  相似文献   

7.
S ummary . Experimental evidence indicates that inhibition of active transport is responsible for the bacteriostatic action of Fentichlor against Staphylococcus aureus . Fentichlor inhibits active transport and assimilation of glutamic acid, and assimilation of glucose under aerobic and anaerobic conditions, but inhibition of assimilation results mainly from inhibition of accumulation rather than direct action on the assimilation process. In the absence of glucose, Fentichlor dissipates the membrane proton gradient and ATP pool but, with glucose present, ATP synthesis is unaffected and although some acceleration of proton translocation occurs, only partial dissipation of the gradient results. Results indicate that Fentichlor-mediated proton translocation prevents coupling of membrane proton movements to active transport as postulated by the chemiosmotic hypothesis. Fentichlor partially inhibits glycolysis and anaerobic ATP synthesis which may contribute to bacteriostasis under anaerobic conditions.  相似文献   

8.
Blood erythroid cells from five beta-thalassemic donors were incubated with [3H]leucine at 37 degrees C to label the pool of excess, free hemoglobin alpha chains. The 3H-labeled cells were split and reincubated in nonradioactive media that either supported ATP production (with 5 mM glucose) or inhibited ATP production (without glucose but with 20 mM 2-deoxyglucose and 0.20 mM 2,4-dinitrophenol). During the 6-h incubation in the glucose medium, the total cellular protein 3H radioactivity decreased about 30%, while the ATP levels remained constant. Chromatographic separation of the alpha- and non-alpha-globin chains of the crude (stroma included) lysates and electrophoretic separation of the free alpha chains and tetrameric hemoglobins of the stroma-free soluble phases both showed that degradation of the alpha chains was responsible for the decrease in protein 3H radioactivity. Conversely, in the energy-deprived cells, the ATP levels dropped to less than 10% of that of the energy-supported cells, and the turnover of alpha-globin 3H radioactivity of the crude lysates was only 5-10%. These results indicate that proteolysis of excess, newly synthesized alpha chains in beta-thalassemic cells is ATP-dependent. The accumulation, mostly in the stromal fraction, of intact 3H-alpha chains in the ATP-deprived cells suggests that an ATP-dependent step occurs early in the biochemical pathway of alpha chain proteolysis. Denaturation resulting in insolubility of the free alpha chains may be a recognition signal for activation of this proteolysis.  相似文献   

9.
Escherichia coli is able to grow at increased NaCl concentrations that provides an increase in medium osmolarity and cellular Na+ content. The addition of 0.5 M NaCl to the growth medium led to a substantial decrease in growth rate during anaerobic fermentation on glucose at pH of 7.3 or 9.0. This inhibitory effect of 0.5 M NaCl was at least threefold stronger than that seen under aerobic conditions, and stronger than equivalent concentrations of sucrose, KCl, or potassium glutamate under anaerobic conditions. Further, proline was found to stimulate the growth rate at high NaCl concentration under anaerobic and to a lesser extent, under aerobic conditions. Wild-type cells and mutants having a functional NhaA or ChaA alone grown under anaerobic conditions at pH 9.0 and subsequently loaded with Na+ were shown to extrude Na+ at a rate that were lower than the extrusion rate reported for appropriate aerobically grown bacteria (Sakuma et al. [1998] Biochim Biophys Acta 1363:231–237). The growth rate and Na+ extrusion activity of a mutant having a functional NhaA were similar to that of the wild type and higher than that of a mutant with an active ChaA. A mutant defective for both NhaA and ChaA was unable to grow under anaerobic conditions at pH 9.0 in the presence of 0.15 M Na+. It is suggested that the observed strong inhibition in the growth of E. coli during fermentation under anaerobic conditions in the presence of increased NaCl concentration could be due to a decrease in Na+ extrusion activity. Received: 18 September 1998 / Accepted: 2 April 1999  相似文献   

10.
The ATP pool of growing fungal mycelia, particularly Fomes annosus, has been determined. The ATP level varied during the different growth phases and correlated with the variations in the economic coefficient. Common uncouplers (at concentrations similar to those used in mitochondrial tests) decreased the ATP pool very rapidly. The size of the pool often fell 50–80% before the O2 uptake decreased below that of the control and was accompanied by an increasing exudation of inorganic phosphate. Phenolic compounds added to the medium stimulated the lacease activity, generally in combination with a decrease in the ATP level.  相似文献   

11.
Anaerobic incubation of rabbit reticulocytes at 37 degrees C in Krebs-Ringer solution supplemented with hemin but devoid of glucose resulted at the end of 1-2h in a drastic decline of their ATP content and an attendant arrest of protein synthesis. Subsequent provision of glucose and reoxygenation of the cells was followed by a rapid replenishment of the ATP pool, while resumption of protein synthesis was markedly delayed. This lag period could be considerably reduced by addition of 5-10 mM adenine or 2,6-diaminopurine to the incubation medium. Lysates prepared from ATP-depleted cells exhibited disaggregation of the polysomes and an inhibition of the nedogenously coded protein synthesis, when tested in a cell-free system supplied with an adequate ATP generator. Both alterations increased in severity with the progressive decay of the intracellular ATP pool. The early phase of partial inhibition following a 40-70% decrease of the cellular ATP level was fully reversible by fortifying the cell-free preparation with dithiothreitol or a suitable NADPH-generating system. Aternative, the inhibition could be also overcome by millimolar amounts of adenine, 2,6-diaminopurine and a variety of other purine derivatives or cyclic AMP. The effect of these compounds was unrelated to the endogenous cyclic AMP pool. Joint addition of both dithiothreitol and cyclic AMP or adenine was necessary for relieving the initiation block in lysates derived from cells depleted of 80-90% of their ATP content. On further aggravating the conditions of energy starvation, an additional requirement for phosphorylated sugars, e.g. glucose 6-phosphate or fructose 1,6-diphosphate, became apparent. ATP depletion brought about by exposing the cells to Antimycin A or 2,4-dinitrophenol resulted in a lesion which was indistinguishable from that induced by anaerobic incubation. On the other hand, energy deprivation in cell-free lysates from untreated reticulocytes, preincubated in the absence of an ATP-generating system failed to duplicate the deleterious effect of intracellular ATP depletion. Some aspects bearing on the biochemical mechanism of the lesion and its reversal are discussed in the light of the available data.  相似文献   

12.
Thauera selenatis was grown anaerobically in minimal medium with either selenate or nitrate as the terminal electron acceptor and acetate as the carbon source and electron donor. The molar cell protein yields, YM-protein (selenate) and YM-protein (nitrate), were found to be 7.8 g cell protein/mol selenite formed and 7.5 g cell protein/mol nitrite formed, respectively. These values represent YM values of 57 and 55 g (dry weight)/mol acetate when selenate or nitrate was the electron acceptor, respectively. Based upon a calculated YATP value of 10.0 g (dry weight) cells/mol ATP, for growth on acetate in inorganic salts, growth with selenate as the terminal electron acceptor theoretically yielded 5.7 ATP/acetate oxidized, and 5.5 ATP when nitrate was the terminal electron acceptor. The results support the conclusion that energy is conserved via electron transport phosphorylation when selenate or nitrate reduction are the terminal electron acceptors during anaerobic growth with acetate.  相似文献   

13.
Calcium Homeostasis in Digitonin-Permeabilized Bovine Chromaffin Cells   总被引:6,自引:6,他引:0  
The regulation of cytosolic calcium was studied in digitonin-permeabilized chromaffin cells. Accumulation of 45Ca2+ by permeabilized cells was measured at various Ca2+ concentrations in the incubation solutions. In the absence of ATP, there was a small (10–15% of total uptake) but significant increase in accumulation of Ca2+ into both the vesicular and nonvesicular pools. In the presence of ATP, the permeabilized cells accumulated Ca2+ into carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-sensitive and -insensitive pools. The CCCP-sensitive pool—mainly mitochondria—was active when the calcium concentration was > 1 μM and was not saturated at 25 μM. The Ca2+ sequestered by the CCCP-insensitive pool could be inhibited by vanadate and released by inositol trisphosphate, a combination suggesting that this pool was the endoplasmic reticulum. The CCCP-insensitive pool had a high affinity for calcium, with an EC50 of ~1 μM. When the Ca2+ concentration was adjusted to the level in the cytoplasm of resting cells (0.1 μM), the presumed endoplasmic reticulum pool was responsible for ~90% of the ATP-stimulated calcium uptake. At a calcium level similar to the acetylcholine-stimulated level in intact cells (5–10 μM), most of the Ca2+ (>95%) went into the CCCP-sensitive pool.  相似文献   

14.
Sulfite, at concentrations above 1 mM and at a pH below 4, caused cell death in Saccharomyces cerevisiae X2180 as measured by the colony-forming capacity. A rapid decrease in the ATP content was observed prior to cellular death. The depletion of ATP was reversible and the lethal effect could be prevented if the cells were exposed to sulfite for periods of less than 1 h. Extent and rate of ATP depletion were dependent on time, pH value, temperature and sulfite concentrations.  相似文献   

15.
Production of polyhydroxyalkanoates (PHAs) by an open mixed culture enriched in glycogen accumulating organisms (GAOs) under alternating anaerobic–aerobic conditions with acetate as carbon source was investigated. The culture exhibited a stable enrichment performance over the 450‐day operating period with regards to phenotypic behavior and microbial community structure. Candidatus Competibacter phosphatis dominated the culture at between 54% and 70% of the bacterial biomass throughout the study, as determined by fluorescence in situ hybridization. In batch experiments under anaerobic conditions, PHA containing 3‐hydroxybutyrate (3HB) and 27 mol‐% 3‐hydroxyvalerate (3HV) was accumulated up to 49% of cell dry weight utilizing the glycogen pool stored in the SBR cycle. Under aerobic and ammonia limited conditions, PHA comprising only 3HB was accumulated to 60% of cell dry weight. Glycogen was consumed during aerobic PHA accumulation as well as under anaerobic conditions, but with different stoichiometry. Under aerobic conditions 0.31 C‐mol glycogen was consumed per consumed C‐mol acetate compared to 0.99 under anaerobic conditions. Both the PHA biomass content and the specific PHA production rate obtained were similar to what is typically obtained using the more commonly applied aerobic dynamic feeding strategy. Biotechnol. Bioeng. 2009; 104: 698–708 © 2009 Wiley Periodicals, Inc.  相似文献   

16.
A number of sulfur compounds were tested as sulfur sources for the growth of three strains of anaerobic halophilic saccharolytic bacteria isolated from hypersaline water bodies of the eastern Crimea (USSR). Dithionite and sulfite at 1 mM concentration completely inhibited the growth of all strains. Methanethiol turned out to be the sole sulfur source for growth ofHalobacteroides strains in the defined medium with glucose and leucine. Methanethiol also stimulated growth of cultures in the complex medium with yeast extract. TheHaloincola saccharolytica Z-7787 appeared to be capable of methanethiol formation from methionine. All organisms studied were capable of heterotrophic sulfur reduction, producing up to 13 mM H2S, but no evidence that they gain energy from the process has been obtained. The extremely halophilicHalobacteroides lacumaris may participate in sulfidogenesis at the high salinity (20–30% NaCl). The ecological position of haloanaerobes in halophilic community is discussed.  相似文献   

17.
Production of nitrogenous waste by livestock agriculture is a significant environmental concern in terms of pollution of land and water. In the rumens of cattle and sheep, the excessive proteolysis which contributes to inefficiency of nutrient use involves both the rumen microbial population and the intrinsic plant proteases that can mediate protein degradation in ingested fresh forage on exposure to the environmental stresses of the rumen. Here, white clover (Trifolium repens) plants that do not form root nodules, and so are dependent on nitrate supplied to the roots, have been used to determine how nitrogen status of the plant affects the rate of plant‐mediated proteolysis in forage under conditions that simulate ingestion by grazing ruminants. Plants were grown from seed and supplied with nutrient solution containing 2.5, 5.0, 7.5 or 10 mM nitrate. Protein, free amino acid and protease activity were determined in leaves which had been placed in an in vitro system designed to simulate conditions experienced in the rumen (anaerobic phosphate buffer maintained at 39°C in the dark). Foliar protein content increased with increasing nitrate supply, while in vitro incubation of leaves resulted in time‐dependent decreases in protein concentration and increases in amino acid concentration. Regardless of nitrate supply, 50% of the protein was degraded in 6 h and 80% after 24 h. As the extent of protein decrease was determined by initial protein content, more protein degradation occurred in those plants grown with the highest nitrate supply: after 6 h, 130.7 mg g?1 dry matter (DM) was degraded in leaves grown at 10 mM nitrate but only 52.3 mg g?1 DM in leaves grown at 2.5 mM nitrate. Hence, although the percentage of proteolysis is independent of foliar protein concentration, the latter is critical to the quantity of protein degraded. Heat‐stable serine and cysteine proteases were active throughout the term of the in vitro incubation. Although proteolysis in ingested forage can continue for many hours, mediated by heat‐stable proteases, maximum amino acid accumulation accounted for less than 40% of initial protein. Therefore, it is proposed that continued and extensive proteolysis occurs following leaf excision and exposure to rumen conditions because amino acid accumulation is insufficient to initiate those feedback systems which sense cytoplasmic amino acid concentration and prevent excessive proteolysis during normal source–sink relations.  相似文献   

18.
The REG1 gene encodes a regulatory subunit of the type-1 protein phosphatase (PP1) Glc7 in Saccharomyces cerevisiae, which directs the catalytic subunit to substrates involved in glucose repression. Loss of REG1 relieves glucose repression of many genes, including the MAL structural genes that encode the maltose fermentation enzymes. In this report, we explore the role of Reg1p and its homolog Reg2p in glucose-induced inactivation of maltose permease. Glucose stimulates the proteolysis of maltose permease and very rapid loss of maltose transport activity – more rapid than can be explained by loss of the permease protein alone. In a reg1Δ strain we observe a significantly reduced rate of glucose-induced proteolysis of maltose permease, and the rapid loss of maltose transport activity does not occur. Instead, surprisingly, the slow rate of proteolysis of maltose permease is accompanied by an increase in maltose transport activity. Loss of Reg2p modestly reduces the rates of both glucose-induced proteolysis of maltose permease and inactivation of maltose transport activity. Overexpression of Reg2p in a reg1Δ strain suppresses the effect on maltose permease proteolysis and partially restores the inactivation of maltose transport activity, but does not affect the insensitivity of MAL gene expression to repression by glucose observed in this strain. Thus, protein phosphatase type-1 (Glc7p-Reg1p and Glc7p-Reg2p) plays a role in transduction of the glucose signal during glucose-induced proteolysis of maltose permease, but only Glc7p-Reg1p is involved in glucose-induced inactivation of maltose transport activity and glucose repression of MAL gene expression. Overexpression of REG1 partially restores proteolysis of maltose permease in a grr1Δ strain, which lacks glucose signaling, but does not rescue rapid inactivation of maltose transport activity or sensitivity to glucose repression. A model for the role of Reg1p and Reg2p in glucose signaling pathways is discussed. We also uncovered a previously unrecognized G2/M delay in the grr1Δ but not the reg1Δ strains, and this delay is suppressed by REG1 overexpression. The G1/S delay seen in grr1Δ mutants is slightly suppressed as well, but REG1 overexpression does not suppress other grr1Δ phenotypes such as insensitivity to glucose repression. Received: 21 October 1999 / Accepted: 28 December 1999  相似文献   

19.
DsrC is a key protein in dissimilatory sulfur metabolism, where it works as co-substrate of the dissimilatory sulfite reductase DsrAB. DsrC has two conserved cysteines in a C-terminal arm that are converted to a trisulfide upon reduction of sulfite. In sulfate-reducing bacteria, DsrC is essential and previous works suggested additional functions beyond sulfite reduction. Here, we studied whether DsrC also plays a role during fermentative growth of Desulfovibrio vulgaris Hildenborough, by studying two strains where the functionality of DsrC is impaired by a lower level of expression (IPFG07) and additionally by the absence of one conserved Cys (IPFG09). Growth studies coupled with metabolite and proteomic analyses reveal that fermentation leads to lower levels of DsrC, but impairment of its function results in reduced growth by fermentation and a shift towards more fermentative metabolism during sulfate respiration. In both respiratory and fermentative conditions, there is increased abundance of the FlxABCD–HdrABC complex and Adh alcohol dehydrogenase in IPFG09 versus the wild type, which is reflected in higher production of ethanol. Pull-down experiments confirmed a direct interaction between DsrC and the FlxABCD–HdrABC complex, through the HdrB subunit. Dissimilatory sulfur metabolism, where sulfur compounds are used for energy generation, is a key process in the ecology of anoxic environments, and is more widespread among bacteria than previously believed. Two central proteins for this type of metabolism are DsrAB dissimilatory sulfite reductase and its co-substrate DsrC. Using physiological, proteomic and biochemical studies of Desulfovibrio vulgaris Hildenborough and mutants affected in DsrC functionality, we show that DsrC is also relevant for fermentative growth of this model organism and that it interacts directly with the soluble FlxABCD-HdrABC complex that links the NAD(H) pool with dissimilatory sulfite reduction.  相似文献   

20.
Spores ofAdiantum capillus-veneris L., which were preincubated at 25 C for three days in the dark, were suspended in 1 mM potassium phosphate buffer, pH 6.0, and incubated for four days under continuous red light in the presence or absence of 3 mM sulfite. At day 0, 2 and 4 of the incubation, contents of cell constituents were determined. Total lipid content decreased continuously over four days of incubation in the absence of sulfite or in the presence of 3 mM sulfate. In contrast, when sulfite was added to the medium, the decrease stopped after day 2. The content of insoluble glucan increased markedly between day 2 and 4 in the medium without sulfite, whereas it decreased continuously for four days in the medium containing sulfite. The protein content decreased promptly by day 2, but its decrease was delayed when 3 mM sulfite was added to the medium. The content of amino acids also decreased by day 2, but it increased thereafter in the absence of sulfite or in the presence of 3 mM sulfate. In the presence of sulfite, however, the content continued to decrease until day 4. The results indicate that 3 mM sulfite in the incubation medium depressed the utilization of reserve lipid and protein, the synthesis of insoluble glucan and the increase of amino acid pool sizes in fern spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号