首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Huang SY  Zou X 《Proteins》2007,66(2):399-421
One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large-scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m, where m represents the m-th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root-mean-square deviation <2.5 A if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re-ranking, and significantly better than that of single rigid-receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)-based methods to accommodate protein flexibility.  相似文献   

3.
GEMDOCK: a generic evolutionary method for molecular docking   总被引:1,自引:0,他引:1  
Yang JM  Chen CC 《Proteins》2004,55(2):288-304
We have developed an evolutionary approach for flexible ligand docking. This approval, GEMDOCK, uses a Generic Evolutionary Method for molecular DOCKing and an empirical scoring function. The former combines both discrete and continuous global search strategies with local search strategies to speed up convergence, whereas the latter results in rapid recognition of potential ligands. GEMDOCK was tested on a diverse data set of 100 protein-ligand complexes from the Protein Data Bank. In 79% of these complexes, the docked lowest energy ligand structures had root-mean-square derivations (RMSDs) below 2.0 A with respect to the corresponding crystal structures. The success rate increased to 85% if the structure water molecules were retained. We evaluated GEMDOCK on two cross-docking experiments in which each ligand of a protein ensemble was docked into each protein of the ensemble. Seventy-six percent of the docked structures had RMSDs below 2.0 A when the ligands were docked into foreign structures. We analyzed and validated GEMDOCK with respect to various search spaces and scoring functions, and found that if the scoring function was perfect, then the predicted accuracy was also essentially perfect. This study suggests that GEMDOCK is a useful tool for molecular recognition and may be used to systematically evaluate and thus improve scoring functions.  相似文献   

4.
A shape-based Gaussian docking function is constructed which uses Gaussian functions to represent the shapes of individual atoms. A set of 20 trypsin ligand-protein complexes are drawn from the Protein Data Bank (PDB), the ligands are separated from the proteins, and then are docked back into the active sites using numerical optimization of this function. It is found that by employing this docking function, quasi-Newton optimization is capable of moving ligands great distances [on average 7 A root mean square distance (RMSD)] to locate the correctly docked structure. It is also found that a ligand drawn from one PDB file can be docked into a trypsin structure drawn from any of the trypsin PDB files. This implies that this scoring function is not limited to more accurate x-ray structures, as is the case for many of the conventional docking methods, but could be extended to homology models.  相似文献   

5.
6.
Seebeck B  Reulecke I  Kämper A  Rarey M 《Proteins》2008,71(3):1237-1254
The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements.  相似文献   

7.
8.
It is difficult to properly validate algorithms that dock a small molecule ligand into its protein receptor using data from the public domain: the predictions are not blind because the correct binding mode is already known, and public test cases may not be representative of compounds of interest such as drug leads. Here, we use private data from a real drug discovery program to carry out a blind evaluation of the RosettaLigand docking methodology and find that its performance is on average comparable with that of the best commercially available current small molecule docking programs. The strength of RosettaLigand is the use of the Rosetta sampling methodology to simultaneously optimize protein sidechain, protein backbone and ligand degrees of freedom; the extensive benchmark test described here identifies shortcomings in other aspects of the protocol and suggests clear routes to improving the method.  相似文献   

9.
A simple method is described to perform docking of subtrates to proteins or probes to receptor molecules by a modification of molecular dynamics simulations. The method consists of a separation of the center-of-mass motion of the substrate from its internal and rotational motions, and a separate coupling to different thermal baths for both types of motion of the substrate and for the motion of the receptor. Thus the temperatures and the time constants of coupling to the baths can be arbitrarily varied for these three types of motion, allowing either a frozen or a flexible receptor and allowing control of search rate without disturbance of internal structure. In addition, an extra repulsive term between substrate and protein was applied to smooth the interaction. The method was applied to a model substrate docking onto a model surface, and to the docking of phosphocholine onto immunoglobulin McPC603, in both cases with a frozen receptor. Using transrational temperatures of the substrate in the range of 1300–1700 K and room temperature for the internal degrees of freedom of the substrate, an efficient nontrapping exploratory search (“helicopter view”) is obtained, which visits the correct binding sites. Low energy conformations can then be further investigated by separate search or by dynamic simulated annealing. In both cases the correct minima were identified. The possibility to work with flexible receptors is discussed. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Several sets of amino acid surface areas and transfer free energies were used to derive a total of nine sets of atomic solvation parameters (ASPs). We tested the accuracy of each of these sets of parameters in predicting the experimentally determined transfer free energies of the amino acid derivatives from which the parameters were derived. In all cases, the calculated and experimental values correlated well. We then chose three parameter sets and examined the effect of adding an energetic correction for desolvation based on these three parameter sets to the simple potential function used in our multiple start Monte Carlo docking method. A variety of protein-protein interactions and docking results were examined. In the docking simulations studied, the desolvation correction was only applied during the final energy calculation of each simulation. For most of the docking results we analyzed, the use of an octanol-water-based ASP set marginally improved the energetic ranking of the low-energy dockings, whereas the other ASP sets we tested disturbed the ranking of the low-energy dockings in many of the same systems. We also examined the correlation between the experimental free energies of association and our calculated interaction energies for a series of proteinase-inhibitor complexes. Again, the octanol-water-based ASP set was compatible with our standard potential function, whereas ASP sets derived from other solvent systems were not.  相似文献   

11.
Prediction of interaction energies between ligands and their receptors remains a major challenge for structure-based inhibitor discovery. Much effort has been devoted to developing scoring schemes that can successfully rank the affinities of a diverse set of possible ligands to a binding site for which the structure is known. To test these scoring functions, well-characterized experimental systems can be very useful. Here, mutation-created binding sites in T4 lysozyme were used to investigate how the quality of atomic charges and solvation energies affects molecular docking. Atomic charges and solvation energies were calculated for 172,118 molecules in the Available Chemicals Directory using a semi-empirical quantum mechanical approach by the program AMSOL. The database was first screened against the apolar cavity site created by the mutation Leu99Ala (L99A). Compared to the electronegativity-based charges that are widely used, the new charges and desolvation energies improved ranking of known apolar ligands, and better distinguished them from more polar isosteres that are not observed to bind. To investigate whether the new charges had predictive value, the non-polar residue Met102, which forms part of the binding site, was changed to the polar residue glutamine. The structure of the resulting Leu99Ala and Met102Gln double mutant of T4 lysozyme (L99A/M102Q) was determined and the docking calculation was repeated for the new site. Seven representative polar molecules that preferentially docked to the polar versus the apolar binding site were tested experimentally. All seven bind to the polar cavity (L99A/M102Q) but do not detectably bind to the apolar cavity (L99A). Five ligand-bound structures of L99A/M102Q were determined by X-ray crystallography. Docking predictions corresponded to the crystallographic results to within 0.4A RMSD. Improved treatment of partial atomic charges and desolvation energies in database docking appears feasible and leads to better distinction of true ligands. Simple model binding sites, such as L99A and its more polar variants, may find broad use in the development and testing of docking algorithms.  相似文献   

12.
For structure-based drug design, where various ligand structures need to be docked to a target protein structure, a docking method that can handle conformational flexibility of not only the ligand, but also the protein, is indispensable. We have developed a simple and effective approach for dealing with the local induced-fit motion of the target protein, and implemented it in our docking tool, ADAM. Our approach efficiently combines the following two strategies: a vdW-offset grid in which the protein cavity is enlarged uniformly, and structure optimization allowing the motion of ligand and protein atoms. To examine the effectiveness of our approach, we performed docking validation studies, including redocking in 18 test cases and foreign-docking, in which various ligands from foreign crystal structures of complexes are docked into a target protein structure, in 22 cases (on five target proteins). With the original ADAM, the correct docking modes (RMSD < 2.0 A) were not present among the top 20 models in one case of redocking and four cases of foreign-docking. When the handling of induced-fit motion was implemented, the correct solutions were acquired in all 40 test cases. In foreign-docking on thymidine kinase, the correct docking modes were obtained as the top-ranked solutions for all 10 test ligands by our combinatorial approach, and this appears to be the best result ever reported with any docking tool. The results of docking validation have thus confirmed the effectiveness of our approach, which can provide reliable docking models even in the case of foreign-docking, where conformational change of the target protein cannot be ignored. We expect that this approach will contribute substantially to actual drug design, including virtual screening.  相似文献   

13.
We present the Coordinate Internal Representation of Solvation Energy (CIRSE) for computing the solvation energy of protein configurations in terms of pairwise interactions between their atoms with analytic derivatives. Currently, CIRSE is trained to a Poisson/surface-area benchmark, but CIRSE is not meant to fit this benchmark exclusively. CIRSE predicts the overall solvation energy of protein structures from 331 NMR ensembles with 0.951+/-0.047 correlation and predicts relative solvation energy changes between members of individual ensembles with an accuracy of 15.8+/-9.6 kcal/mol. The energy of individual atoms in any of CIRSE's 17 types is predicted with at least 0.98 correlation. We apply the model in energy minimization, rotamer optimization, protein design, and protein docking applications. The CIRSE model shows some propensity to accumulate errors in energy minimization as well as rotamer optimization, but these errors are consistent enough that CIRSE correctly identifies the relative solvation energies of designed sequences as well as putative docked complexes. We analyze the errors accumulated by the CIRSE model during each type of simulation and suggest means of improving the model to be generally useful for all-atom simulations.  相似文献   

14.
A model binding site was used to investigate charge-charge interactions in molecular docking. This simple site, a small (180A(3)) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre"ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20microM and 60microM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the "naked" site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions. Whereas most of these did not bind, two did (phenol and 3-fluorocatechol). Crystal structures for these two ligands in complex with the cavity site suggest reasons for their binding. That these neutral molecules do, in fact bind, contradicts previous results in this site and, along with the alkyl amines, provides instructive false negatives that help identify weaknesses in our scoring functions. Several improvements of these are considered.  相似文献   

15.
Molecular docking algorithms suggest possible structures for molecular complexes. They are used to model biological function and to discover potential ligands. A present challenge for docking algorithms is the treatment of molecular flexibility. Here, the rigid body program, DOCK, is modified to allow it to rapidly fit multiple conformations of ligands. Conformations of a given molecule are pre-calculated in the same frame of reference, so that each conformer shares a common rigid fragment with all other conformations. The ligand conformers are then docked together, as an ensemble, into a receptor binding site. This takes advantage of the redundancy present in differing conformers of the same molecule. The algorithm was tested using three organic ligand protein systems and two protein-protein systems. Both the bound and unbound conformations of the receptors were used. The ligand ensemble method found conformations that resembled those determined in X-ray crystal structures (RMS values typically less than 1.5 A). To test the method's usefulness for inhibitor discovery, multi-compound and multi-conformer databases were screened for compounds known to bind to dihydrofolate reductase and compounds known to bind to thymidylate synthase. In both cases, known inhibitors and substrates were identified in conformations resembling those observed experimentally. The ligand ensemble method was 100-fold faster than docking a single conformation at a time and was able to screen a database of over 34 million conformations from 117,000 molecules in one to four CPU days on a workstation.  相似文献   

16.
A computer algorithm, CLIX, capable of searching a crystallographic data-base of small molecules for candidates which have both steric and chemical likelihood of binding a protein of known three-dimensional structure is presented. The algorithm is a significant advance over previous strategies which consider solely steric or chemical requirements for binding. The algorithm is shown to be capable of predicting the correct binding geometry of sialic acid to a mutant influenza-virus hemagglutinin and of proposing a number of potential new ligands to this protein.  相似文献   

17.
Background: In recent years, since the molecular docking technique can greatly improve the efficiency and reduce the research cost, it has become a key tool in computer-assisted drug design to predict the binding affinity and analyze the interactive mode. Results: This study introduces the key principles, procedures and the widely-used applications for molecular docking. Also, it compares the commonly used docking applications and recommends which research areas are suitable for them. Lastly, it briefly reviews the latest progress in molecular docking such as the integrated method and deep learning. Conclusion: Limited to the incomplete molecular structure and the shortcomings of the scoring function, current docking applications are not accurate enough to predict the binding affinity. However, we could improve the current molecular docking technique by integrating the big biological data into scoring function.  相似文献   

18.
With the decline in productivity of drug‐development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence‐based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure‐based approach, in which protein‐peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 505–513, 2009. This article was originally published online as an accepted preprint. The “Published Online”date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G‐LoSA. G‐LoSA aligns protein local structures in a sequence order independent way and provides a GA‐score, a chemical feature‐based and size‐independent structure similarity score. Our benchmark validation shows the robust performance of G‐LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure‐centric comparative biology studies. In particular, G‐LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G‐LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer‐aided drug design. We hope that G‐LoSA can be a useful computational method for exploring interesting biological problems through large‐scale comparison of protein local structures and facilitating drug discovery research and development. G‐LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/ .  相似文献   

20.
A solvation energy function for use in the molecular simulation of proteins is proposed. It is based on the accessible surface areas of atoms in the protein and on atomic solvation parameters derived from empirical vapor-to-water free energies of transfer of amino acid side-chain analogs. The energy function and its derivatives were added to the CHARMM molecular simulation program (Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., & Karplus, M., 1983, J. Comput. Chem. 4(2), 187-217). The effect of the added energy term was evaluated by 110 ps of molecular dynamics on the 26-residue protein melittin. The melittin monomer and tetramer were studied both with and without the added term. With the added energy term the monomer partially unfolded, while the secondary structure of the tetramer was preserved, in agreement with reported experiments (Brown, L.R., Lauterwein, J., & Wuethrich, K., 1980, Biochim. Biophys. Acta 622(2), 231-244; Lauterwein, J., Brown, L.R., & Wuethrich, K., 1980, Biochim. Biophys. Acta 622(2), 219-230).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号