首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR) play an essential role in stabilizing the visual axis (gaze), while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space) and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1) quantify vestibularly-driven head movements in primates, and 2) assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.  相似文献   

2.
Patients with bilateral vestibular dysfunction cannot fully compensate passive head rotations with eye movements, and experience disturbing oscillopsia. To compensate for the deficient vestibulo-ocular reflex (VOR), they have to rely on re-fixation saccades. Some can trigger “covert” saccades while the head still moves; others only initiate saccades afterwards. Due to their shorter latency, it has been hypothesized that covert saccades are particularly beneficial to improve dynamic visual acuity, reducing oscillopsia. Here, we investigate the combined effect of covert saccades and the VOR on clear vision, using the Head Impulse Testing Device – Functional Test (HITD-FT), which quantifies reading ability during passive high-acceleration head movements. To reversibly decrease VOR function, fourteen healthy men (median age 26 years, range 21–31) were continuously administrated the opioid remifentanil intravenously (0.15 µg/kg/min). VOR gain was assessed with the video head-impulse test, functional performance (i.e. reading) with the HITD-FT. Before opioid application, VOR and dynamic reading were intact (head-impulse gain: 0.87±0.08, mean±SD; HITD-FT rate of correct answers: 90±9%). Remifentanil induced impairment in dynamic reading (HITD-FT 26±15%) in 12/14 subjects, with transient bilateral vestibular dysfunction (head-impulse gain 0.63±0.19). HITD-FT score correlated with head-impulse gain (R = 0.63, p = 0.03) and with gain difference (before/with remifentanil, R = −0.64, p = 0.02). One subject had a non-pathological head-impulse gain (0.82±0.03) and a high HITD-FT score (92%). One subject triggered covert saccades in 60% of the head movements and could read during passive head movements (HITD-FT 93%) despite a pathological head-impulse gain (0.59±0.03) whereas none of the 12 subjects without covert saccades reached such high performance. In summary, early catch-up saccades may improve dynamic visual function. HITD-FT is an appropriate method to assess the combined gaze stabilization effect of both VOR and covert saccades (overall dynamic vision), e.g., to document performance and progress during vestibular rehabilitation.  相似文献   

3.
Eye movements serve vision, which has two different aims: changing images using saccades, i.e. rapid eye movements, and stabilizing new images on the retina using slow eye movements. Eye movements are performed by ocular motor nuclei in the brainstem, on which supranuclear pathways--originating in the cerebral cortex, cerebellum and vestibular structures--converge. It is useful for the neurologist to know the clinical abnormalities of eye movements visible at the bedside since such signs are helpful for localization. Eye movement paralysis may be nuclear or infranuclear (nerves), involving all types of eye movements, i.e. saccades as well as the vestibulo-ocular reflex (VOR), or supranuclear, in which case the VOR is usually preserved. Lateral eye movements are organized in the pons, with paralysis of adduction (and preservation of convergence) when the lesion affects the medial longitudinal fasciculus (internuclear ophthalmoplegia), paralysis of conjugate lateral eye movements when the lesion affects the abducens nucleus (VI) and the "one-and-a-half" syndrome when both these structures are involved. Vertical eye movements are organized in the midbrain, with ipsilateral oculomotor (III) paralysis and contralateral paralysis of the superior rectus muscle when the third nerve nucleus is unilaterally damaged, supranuclear upward gaze paralysis when the posterior commissure is unilaterally damaged and supranuclear downward gaze paralysis (often coupled with upward gaze paralysis) when the mesencephalic reticular formations are bilaterally damaged. Numerous types of abnormal eye movements exist, of which nystagmus is the most frequent and usually due to damage to peripheral or central vestibular pathways. Cerebral hemispheric or cerebellar damage results in subtle eye movement abnormalities at the bedside, in general only detected using eye movement recordings, because of the multiplicity of eye movement pathways at these levels and their reciprocal compensation in the case of a lesion. Lastly, eye movements can also help the neuroscientist to understand the organization of the brain. They are a good model of motricity allowing us, using eye movement recordings, to study the afferent pathways of the cortical areas that trigger them, and thus to analyze relatively complex neuropsychological processes such as visuo-spatial integration, spatial memory, motivation and the preparation of motor programs.  相似文献   

4.
Visual evoked potentials (VEPs) to the onset of motion of visual patterns and brain responses associated with saccadic eye movements (SRPs) were compared in human subjects and in rhesus monkeys. Three different velocities of pattern motion were employed. In humans, brain responses were recorded from six scalp areas. In monkeys, transcortical recordings were obtained from chronically implanted electrodes in the occipital, temporo-parietal, and frontal areas. In humans there was a clear difference in VEPs to the pattern motion between the anterior (Fz, Cz) and posterior (Pz, Oz) scalp regions. The earliest component was a positive peak at 85 ms at Oz followed by a negativity around 110 ms. In the fronto-central leads the VEP was characterized by a negativity at 145 ms and a subsequent broad positive component around 250 ms. SRP responses differed in the early components from the VEPs to pattern motion but a good correspondence was found in the morphology of the late components of the two types of brain potentials. Furthermore, flashed-on VEPs and SRPs elicited a late positivity of more pronounced amplitude than VEPs to pattern displacement. In monkeys similar findings were found: an early negative component of the pattern-displacement VEP could not be observed in the SRP responses over the visual cortex while the late portion of the SRP waveform was greater than the late positivity of the VEP to motion-onset.  相似文献   

5.
Our objective was to characterize the saccadic eye movements in patients with type 3 Gaucher disease (chronic neuronopathic) in relationship to neurological and neurophysiological abnormalities. For approximately 4 years, we prospectively followed a cohort of 15 patients with Gaucher type 3, ages 8-28 years, by measuring saccadic eye movements using the scleral search coil method. We found that patients with type 3 Gaucher disease had a significantly higher regression slope of duration vs amplitude and peak duration vs amplitude compared to healthy controls for both horizontal and vertical saccades. Saccadic latency was significantly increased for horizontal saccades only. Downward saccades were more affected than upward saccades. Saccade abnormalities increased over time in some patients reflecting the slowly progressive nature of the disease. Phase plane plots showed individually characteristic patterns of abnormal saccade trajectories. Oculo-manual dexterity scores on the Purdue Pegboard test were low in virtually all patients, even in those with normal cognitive function. Vertical saccade peak duration vs amplitude slope significantly correlated with IQ and with the performance on the Purdue Pegboard but not with the brainstem and somatosensory evoked potentials. We conclude that, in patients with Gaucher disease type 3, saccadic eye movements and oculo-manual dexterity are representative neurological functions for longitudinal studies and can probably be used as endpoints for therapeutic clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT00001289.  相似文献   

6.

Background

Frequent oulomotricity problems with orthoptic testing were reported in patients with tinnitus. This study examines with objective recordings vergence eye movements in patients with somatic tinnitus patients with ability to modify their subjective tinnitus percept by various movements, such as jaw, neck, eye movements or skin pressure.

Methods

Vergence eye movements were recorded with the Eyelink II video system in 15 (23–63 years) control adults and 19 (36–62 years) subjects with somatic tinnitus.

Findings

1) Accuracy of divergence but not of convergence was lower in subjects with somatic tinnitus than in control subjects. 2) Vergence duration was longer and peak velocity was lower in subjects with somatic tinnitus than in control subjects. 3) The number of embedded saccades and the amplitude of saccades coinciding with the peak velocity of vergence were higher for tinnitus subjects. Yet, saccades did not increase peak velocity of vergence for tinnitus subjects, but they did so for controls. 4) In contrast, there was no significant difference of vergence latency between these two groups.

Interpretation

The results suggest dysfunction of vergence areas involving cortical-brainstem-cerebellar circuits. We hypothesize that central auditory dysfunction related to tinnitus percept could trigger mild cerebellar-brainstem dysfunction or that tinnitus and vergence dysfunction could both be manifestations of mild cortical-brainstem-cerebellar syndrome reflecting abnormal cross-modality interactions between vergence eye movements and auditory signals.  相似文献   

7.
In twoMacaca rhesus monkeys that received repeated N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injections (single dose 0.2 mg/kg, i.m.; cumulative dose 11.2–13.3 mg), changes in characteristics of spontaneous saccadic eye movements and vestibulo-ocular reflex (VOR) were evaluated. With the development of severe behavioral disturbances, amplitude of spontaneous saccadic eye movements gradually decreased. Pronounced changes in duration of saccadic eye movements, frequency of spontaneous saccades, and their pattern were observed. No changes in parameters of VOR slow component were recorded, but high total MPTP doses suppressed fast phase of the reflex.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 184–190, May–June, 1993.  相似文献   

8.

Background

Catch-up saccades during passive head movements, which compensate for a deficient vestibulo-ocular reflex (VOR), are a well-known phenomenon. These quick eye movements are directed toward the target in the opposite direction of the head movement. Recently, quick eye movements in the direction of the head movement (covert anti-compensatory quick eye movements, CAQEM) were observed in older individuals. Here, we characterize these quick eye movements, their pathophysiology, and clinical relevance during head impulse testing (HIT).

Methods

Video head impulse test data from 266 patients of a tertiary vertigo center were retrospectively analyzed. Forty-three of these patients had been diagnosed with vestibular migraine, and 35 with Menière’s disease.

Results

CAQEM occurred in 38% of the patients. The mean CAQEM occurrence rate (per HIT trial) was 11±10% (mean±SD). Latency was 83±30 ms. CAQEM followed the saccade main sequence characteristics and were compensated by catch-up saccades in the opposite direction. Compensatory saccades did not lead to more false pathological clinical head impulse test assessments (specificity with CAQEM: 87%, and without: 85%). CAQEM on one side were associated with a lower VOR gain on the contralateral side (p<0.004) and helped distinguish Menière’s disease from vestibular migraine (p = 0.01).

Conclusion

CAQEM are a common phenomenon, most likely caused by a saccadic/quick phase mechanism due to gain asymmetries. They could help differentiate two of the most common causes of recurrent vertigo: vestibular migraine and Menière’s disease.  相似文献   

9.
Recordings were performed in the thalamus of 13 patients suffering from either abnormal movements or intractable pain, with the aim of delimiting the region to be destroyed or stimulated in order to diminish the syndrome. In 11 of these patients averaged evoked potentials were recorded simultaneously from the scalp and specific thalamus (VP) hand area levels following median nerve stimulation. These recordings were done during the operation or afterwards when an electrode was left in place for a program of stimulation.The latencies of onsets and peaks on the scalp ‘P15’ were compared with those of the VP wave; a clear correspondence was found. Moreover, when increased stimulation was used, both waves began to develop in parallel. Thus in the contralateral ‘P15’ a component exists due to the field produced by the thalamic response. To explain the presence of an ipsilateral scalp ‘P15’ wave, we propose that a second wave having the same latency and a slightly shorter peak exists on the scalp due to a field produced by a brain-stem response. This double origin of ‘P15’ is also shown by the different changes which the ipsilateral and contralateral waves present during changes in alertness.The scalp ‘N18–N20’ is also composed of at least 2 components. The first peak appears on the scalp with a latency shorter than that of the negativity which develops in the thalamus. The N wave, moreover, increases in latency with rapid stimulus repetition. We propose with others that ‘N18’ is a cortical event reflecting the arrival of the thalamo-cortical volley. The second component, ‘N20,’ has a peak latency closely correlated to that of the thalamic negativity. This component was present alone in ‘N’ when rapid stimulation (> 4/sec) was used, which did not change the thalamic response. It must be a field produced by the thalamic negativity.  相似文献   

10.
Previous studies have shown that the somatosensory evoked potentials (SEPs) recorded from the scalp are modified or gated during motor activity in man. Animal studies show corticospinal tract terminals in afferent relays, viz. dorsal horn of spinal cord, dorsal column nuclei and thalamus. Is the attenuation of the SEP during movement the result of gating in subcortical nuclei? This study has investigated the effect of manipulation and fractionated finger movements of the hand on the subcortically generated short latency SEPs in 9 healthy subjects. Left median nerve SEPs were recorded with electrodes optimally placed to record subcortical activity with the least degree of contamination. There was no statistically significant change in amplitude or latency of the P9, N11, N13, P14, N18 and N20 potentials during rest or voluntary movement of the fingers of the left hand or manipulation of objects placed in the hand. The shape of the N13 wave form was not modified during these 3 conditions. It is concluded that in man attenuation of cortical waves during manipulation is not due to an effect of gating in the subcortical sensory relay nuclei.  相似文献   

11.
An ongoing controversy has to do with the interactions between “fast” (saccadic, quick phase) and “slow” (all other) eye movements. By attacking such issues with both experimental and especially simulation studies using our nonlinear sixth order reciprocally innervated model of the eye mechanical system, insights can be gained into the nature of these nontrivial phenomena. In our present study we relied both (1) on simulation of saccades under a wide range of experimental conditions [vestibular ocular reflex (VOR) velocities from -100 to 100 deg/sec, VOR induced position ranges from -30 to 30 degrees, time-optimal saccades ranging from 2 to 40 degrees], and (2) on using a wide variety of computer simulation of eye movement models, ranging from nonlinear ones with first and especially second order multipulse step controller signal structures, to different controller signal interaction schemes, to simulation using linearized models. We have isolated two important nonlinear phenomena: a level I nonlinear mechanical interaction, dependent not only on the initial velocity but also on the “position effect,” a new finding; and a level II nonlinear neurological interaction, close to “squelching” of the VOR controller signals by the dominating saccadic signal. Furthermore, we have used our simulation findings to reinterpret others' experimental data on eye movement interactions, including saccadic-smooth pursuit, saccadic-vergence, and vestibular nystagmus.  相似文献   

12.
Intraoperative recordings obtained from electrodes placed on the scalp (vertex and earlobe or ear canal) in response to click stimulation were compared with recordings made directly from the auditory nerve in patients undergoing microvascular decompression (MVD) operations to relieve hemifacial spasm (HFS) and disabling positional vertigo (DPV). The results support earlier findings that show that the auditory nerve is the generator of both peak I and peak II in man, and that it is the intracranial portion of the auditory nerve that generates peak II. The results indicate that the second negative peak in the potentials recorded from the earlobe is generated by the auditory nerve where it passes through the porus acusticus into the skull cavity, and that the proximal portion of the intracranial portion of the auditory nerve generates a positive peak in the potentials that are recorded from the vertex. This peak appears with a latency that is slightly longer than that of the second negative peak in the potentials recorded from the earlobe (or ear canal). The second negative peak in the recording from the ear canal and the positive peak in the vertex recording contribute to peak II in the differentially recorded BAEP. Since our results indicate that the difference in the latency of the second negative peak in the recording from the earlobe and that of the positive peak in the vertex recording represents the neural travel time in the intracranial portion of the auditory nerve, this measure may be valuable in the differential diagnosis of eighth nerve disorders such as vascular compression syndrome.  相似文献   

13.
Saccadic latencies were studied in ten healthy subjects. Peripheral targets were presented monocularly to a leading and nonleading eyes in the right and left hemifields. SS (single step) and OVERLAP (200 ms) schemes of visual stimulation were used. Under OVERLAP conditions, the saccadic latency was longer by 30-39 ms and the number of long-latency saccades was higher than under SS conditions, especially in subjects with mixed asymmetry profiles. In the majority of subjects with right asymmetry profile, the latencies of saccades during stimulation of the leading eye were by 12 ms shorter than during stimulation of the nonleading eye, and the latencies of right saccades were by 24 ms shorter than that of the left saccades independently of the stimulated eye. The obtained results explain some characteristic features of hemyspheric asymmetry in organization of saccadic movements.  相似文献   

14.

Introduction

Dual-task performance is known to affect postural stability in children. This study focused on the effect of oculomotor tasks like saccadic eye movements on postural stability, studied in a large population of children by recording simultaneously their eye movements and posture.

Materials and Methods

Ninety-five healthy children from 5.8 to 17.6 years old were examined. All children were free of any vestibular, neurological, ophtalmologic and orthoptic abnormalities. Postural control was measured with a force platform TechnoConcept®, and eye movements with video oculography (MobilEBT®). Children performed two oculomotor tasks: fixation of a stable central target and horizontal saccades. We measured the saccade latency and the number of saccades during fixation as well as the surface, length and mean velocity of the center of pressure.

Results

During postural measurement, we observed a correlation between the age on the one hand and a decrease in saccade latency as well as an improvement in the quality of fixation on the other. Postural sway decreases with age and is reduced in the dual task (saccades) in comparison with a simple task of fixation.

Discussion - Conclusion

These results suggest a maturation of neural circuits controlling posture and eye movements during childhood. This study also shows the presence of an interaction between the oculomotor system and the postural system. Engaging in oculomotor tasks results in a reduction of postural sway.  相似文献   

15.
Event-related potentials (ERPs) to word stimuli were registered in 20 twenty-one-year-old students (7 males and 13 females) of the Faculty of Medicine of Palacky University. In an ideal case in the first 800 ms after the onset of stimulus ERP consists of three clear positive and four negative waves. The amplitude of some waves of ERPs shows a high degree of inter-individual variability. It was also revealed that the latency and amplitude of some ERPs waves to word stimuli depends on the gender and on the site of the registration electrode on the scalp of the subject. Latencies of components LP2 and LN4 in all electrodes are shorter in females than in males, component LN2 behaves reversely--its latency is shorter in males. On the other hand, the amplitude of dependent variables BP2, BN2 and PV1 is in most electrodes higher in females than in males--except for the amplitude of components BP4 and BN1.  相似文献   

16.
Recording of ocular nystagmus during vestibular tests does not measure the true response of the vestibulo-ocular reflex (VOR), because the VOR response (so-called slow phase of nystagmus) is interrupted by resetting saccades (so-called fast phase of nystagmus). In order to extract the real VOR contribution, saccades must be removed. In most of the nystagmus processing algorithms, saccade removal requires a human operator to choose a suitable eye velocity threshold able to separate fast from slow nystagmus phases. In the present report a fully automatic removal system is presented which selects an optimal velocity threshold by computing the VOR frequency response and maximizing its coherence function.  相似文献   

17.
The induced gamma-band EEG response (iGBR) recorded on the scalp is widely assumed to reflect synchronous neural oscillation associated with object representation, attention, memory, and consciousness. The most commonly reported EEG iGBR is a broadband transient increase in power at the gamma range approximately 200-300 ms following stimulus onset. A conspicuous feature of this iGBR is the trial-to-trial poststimulus latency variability, which has been insufficiently addressed. Here, we show, using single-trial analysis of concomitant EEG and eye tracking, that this iGBR is tightly time locked to the onset of involuntary miniature eye movements and reflects a saccadic "spike potential." The time course of the iGBR is related to an increase in the rate of saccades following a period of poststimulus saccadic inhibition. Thus, whereas neuronal gamma-band oscillations were shown conclusively with other methods, the broadband transient iGBR recorded by scalp EEG reflects properties of miniature saccade dynamics rather than neuronal oscillations.  相似文献   

18.
The neural generators of the somatosensory evoked potentials (SEPs) elicited by electrical stimulation of the median nerve were studied in man and in rhesus monkeys. Recordings from the cuneate nucleus were compared to the far-field potentials recorded from electrodes placed on the scalp. It was found that the shape of the response from the surface of the human cuneate nucleus to stimulation of the median nerve is similar to that of the response recorded more caudally in the dorsal column, i.e., an initially small positivity followed by a negative wave that is in turn followed by a slow positive wave. The beginning of the negative wave coincides in time with the N14 peak in the SEP recorded from the scalp, and its latency is 13 msec. The response from the cuneate nucleus in the rhesus monkey has a similar shape and its negative peak appears with the same latency as the positive peak in the vertex response that has a latency of 4.5 msec; the peak negativity has a latency of about 6 msec and thus coincides with P6.2 in the vertex recording. Depth recordings from the cuneate nucleus and antidromic stimulation of the dorsal column fibers in the monkey provide evidence that the early components of the response from the surface of the cuneate nucleus are generated by the dorsal column fibers that terminate in the nucleus.The results support the hypothesis that the P14 peak in the human SEP is generated by the termination of the dorsal column fibers and that the cuneate nucleus itself contributes little to the far-field potentials.  相似文献   

19.
The short and long latency reflex responses of human triceps brachii muscle were recorded in 14 healthy volunteers. An electromechanical hammer was used to stretch the muscle and recordings were made from a surface electromyogram. The monosynaptic tendon reflex occurred at a mean latency of 12.5 ms (SE 0.7 ms). Later responses were observed in activated conditions (weak force production, preparatory period) at a mean latency of 62.8 ms (SE 3.5 ms). The amplitude of the short latency reflex increased during weak tension, the long latency reflex amplitude seemed to increase during the preparatory period testing. The amplitude increases can be attributed to increased lower motoneuron excitability even during weak voluntary activity. The tendency towards an increased amplitude during the preparatory period may be connected with the higher regulation of the long latency reflex.  相似文献   

20.
The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号