首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Poland–Fixman–Freire formalism was adapted for modeling of calorimetric DNA melting profiles, and applied to plasmid pBR 322 and long random sequences. We studied the influence of the difference (HGC?HAT) between the helix‐coil transition enthalpies of AT and GC base pairs on the calorimetric melting profile and on normalized calorimetric melting profile. A strong alteration of DNA calorimetrical profile with HGC?HAT was demonstrated. In contrast, there is a relatively slight change in the normalized profiles and in corresponding ordinary (optical) normalized differential melting curves (DMCs). For fixed HGC?HAT, the average relative deviation (S) between DMC and normalized calorimetric profile, and the difference between their melting temperatures (Tcal?Tm) are weakly dependent on peculiarities of the multipeak fine structure of DMCs. At the same time, both the deviation S and difference (Tcal?Tm) enlarge with the temperature melting range of the helix‐coil transition. It is shown that the local deviation between DMC and normalized calorimetric profile increases in regions of narrow peaks distant from the melting temperature.  相似文献   

2.
A new classification scheme based on the melting profile of DNA sequences simulated thermal melting profiles. This method was applied in the classification of (a) several species of mammalian - β globin and (b) α-chain class II MHC genes. Comparison of the thermal melting profile with the molecular phylogenetic trees constructed using the sequences shows that the melting temperature based approach is able to reproduce most of the major features of the sequence based evolutionary tree. Melting profile method takes into account the inherent structure and dynamics of the DNA molecule, does not require sequence alignment prior to tree construction, and provides a means to verify the results experimentally. Therefore our results show that melting profile based classification of DNA sequences could be a useful tool for sequence analysis.  相似文献   

3.
Monte Carlo (MC) simulations, Differential Scanning Calorimetry (DSC) and Fourier Transform InfraRed (FTIR) spectroscopy were used to study the melting behavior of individual lipid components in two-component membranes made of DMPC and DSPC. We employed Monte Carlo simulations based on parameters obtained from DSC profiles to simulate the melting of the different lipids as a function of temperature. The simulations show good agreement with the FTIR data recorded for deuterated and non-deuterated lipids, which demonstrates that the information on the differential melting of the individual components is already contained in the calorimetric profiles. In mixtures, both lipids melt over a wide temperature range. As expected, the lipid melting events of the lipid with the lower melting temperature occur on average at lower temperatures. The simulations also yield information on the lateral distribution of the lipids that is neither directly contained in the DSC nor in the FTIR data. In the phase coexistence region, liquid disordered domains are typically richer in the lower-melting-temperature lipid species.  相似文献   

4.
Spectroscopic and calorimetric melting studies of 28 DNA hairpins were performed. These hairpins form by intramolecular folding of 16 base self‐complementary DNA oligomer sequences. Sequence design dictated that the hairpin structures have a six base pair duplex linked by a four base loop and that the first five base pairs in the stem are the same in every molecule. Only loop sequence and identity of the duplex base pair closing the loop vary for the set of hairpins. For these DNA samples, melting studies were carried out to investigate effects of the variables on hairpin stability. Stability of the 28 oligomers was ascertained from their temperature‐induced melting transitions in buffered 115 mM Na+ solvent, monitored by ultraviolet absorbance and differential scanning calorimetry (DSC). Experiments revealed the melting temperatures of these molecules range from 32.4 to 60.5°C and are concentration independent over strand concentrations of 0.5 to 260 μM; thus, as expected for hairpins, the melting transitions are apparently unimolecular. Model independent thermodynamic transition parameters, ΔHcal, ΔScal, and ΔGcal, were determined from DSC measurements. Model dependent transition parameters, ΔHvH, ΔSvH, and ΔGvH were estimated from a van't Hoff (two‐state) analysis of optical melting transitions. Results of these studies reveal a significant sequence dependence to DNA hairpin stability. Thermodynamic parameters evaluated by either procedure reveal the transition enthalpy, ΔHcalHvH) can differ by as much as 20 kcal/mol depending on sequence. Similarly, values of the transition entropy ΔScalSvH) can differ by as much as 60 cal/Kmol (eu) for different molecules. Differences in free energies ΔGcalGvH) are as large as 4 kcal/mol for hairpins with different sequences. Comparisons between the model independent calorimetric values and the thermodynamic parameters evaluated assuming a two‐state model reveal that 10 of the 28 hairpins display non‐two‐state melting behavior. The database of sequence‐dependent melting free energies obtained for the hairpins was employed to extract a set of n‐n (nearest‐neighbor) sequence dependent loop parameters that were able to reproduce the input data within error (with only two exceptions). Surprisingly, this suggests that the thermodynamic stability of the DNA hairpins can in large part be reasonably represented in terms of sums of appropriate nearest‐neighbor loop sequence parameters. © 1999 John Wiley & Sons, Inc. Biopoly 50: 425–442, 1999  相似文献   

5.
In this article, we show that high resolution melting analysis (HRM) is a sensitive and specific method for the detection of methylation. Methylated DNA and unmethylated DNA acquire different sequences after bisulphite treatment resulting in PCR products with markedly different melting profiles. We used PCR to amplify both methylated and unmethylated sequences and assessed HRM for the determination of the methylation status of the MGMT promoter region. Reconstruction experiments showed that MGMT methylation could be detected at levels as low as 0.1%. Moreover, MS-HRM allows for estimation of the methylation level by comparing the melting profiles of unknown PCR products to the melting profiles of PCR products derived from standards with a known unmethylated to methylated template ratio. We used MS-HRM for the analysis of eight cell lines of known methylation status and a panel of colorectal cancer specimens. The simplicity and high reproducibility of the MS-HRM protocol makes MS-HRM the method of choice for methylation assessment in many diagnostic and research applications.  相似文献   

6.
We present an investigation of the helix–coil transition in a stable branched oligomer of DNA, known as an immobile DNA junction. This junction is composed of four 16-mer strands, which yield four double-helical arms, each containing 8 nucleotide pairs. Properties of the individual arms of this complex are modeled by four octameric duplexes. We have performed experiments using calorimetry, uv absorbance, and CD spectroscopy to characterize the melting transitions of the junction and each arm. By comparing our spectroscopic and calorimetric results on the junction and its component arms, we are able to conclude the following: (1) The calorimetric transition enthalpy for the overall junction complex is equal to the sum of the calorimetric transition enthalpies of the four constituent duplex arms. (2) The optical and the calorimetric measurements yield qualitatively similar, but not identical thermodynamic data. (3) The melting temperature of the junction is less dependent on concentration than the melting temperatures of the individual arms. We attribute this observation to the tetrameric nature of the junction. (4) The ratio of the calorimetric transition enthalpy of the junction and its corresponding van't Hoff value is close to unity. (5) The CD spectrum of the junction is equal quantitatively to the sum of the B-like CD spectra of the four constituent duplex arms.  相似文献   

7.
Summary Mutagenic DNA repair is a function of many naturally occurring plasmids belonging to several different incompatibility groups. A DNA probe corresponding to the impCAB operon of the IncIl plasmid TP110, which encodes such functions, was used to investigate the distribution of homologous sequences in both related and unrelated plasmids. Southern blotting was used to demonstrate considerable sequence conservation amongst a number of plasmid types, with imp-related sequences being found on plasmids belonging to the I1, I1/B, B and FIV incompatibility groups. However, no homology was detected amongst plasmids of the N and L/M incompatibility groups, many of which carry functionally similar gene clusters. It appears that sequences determining mutagenic repair functions have been largely conserved within any one incompatibility group, but that significant divergent evolution has occurred between groups.  相似文献   

8.
High-resolution melting (HRM) allows single-nucleotide polymorphism (SNP) detection/typing using inexpensive generic heteroduplex-detecting double-stranded DNA (dsDNA) binding dyes. Until recently HRM has been a post-PCR process. With the LightCycler 480 System, however, the entire mutation screening process, including post-PCR analysis, can be performed using a single instrument. HRM assays were developed to allow screening of the ryanodine receptor gene (RYR1) for potential mutations causing malignant hyperthermia (MH) and/or central core disease (CCD) using the LightCycler 480 System. The assays were validated using engineered plasmids and/or genomic DNA samples that are either homozygous wild type or heterozygous for one of three SNPs that lead to the RyR1 amino acid substitutions T4826I, H4833Y, and/or R4861H. The HRM analyses were conducted using two different heteroduplex-detecting dsDNA binding dyes: LightCycler 480 HRM dye and LCGreen Plus. Heterozygous samples for each of the HRM assays were readily distinguished from homozygous samples with both dyes. By using engineered plasmids, it was shown that even homozygous sequence variations can be identified by using either small amplicons or the addition of exogenous DNA after PCR. Thus, the LightCycler 480 System provides a novel, integrated, real-time PCR/HRM platform that allows high throughput, inexpensive SNP detection, and genotyping based on high-resolution amplicon melting.  相似文献   

9.
Length-dependent energetics of (CTG)n and (CAG)n trinucleotide repeats   总被引:1,自引:0,他引:1  
Trinucleotide repeats are involved in a number of debilitating diseases such as myotonic dystrophy. Twelve to seventy-five base-long (CTG)n oligodeoxynucleotides were analysed using a combination of biophysical [UV-absorbance, circular dichroism and differential scanning calorimetry (DSC)] and biochemical methods (non-denaturing gel electrophoresis and enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature that was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed an unprecedented length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent (calorimetry) experiments. Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots and DSC profiles. Such behaviour is analysed in the framework of an intramolecular ‘branched-hairpin’ model, in which long CTG oligomers do not fold into a simple long hairpin–stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. We demonstrate that, for sequences ranging from 12 to 25 CTG repeats, an intramolecular structure with two loops is formed which we will call ‘bis-hairpin’. Similar results were also found for CAG oligomers, suggesting that this observation may be extended to various trinucleotide repeats-containing sequences.  相似文献   

10.
11.
M Sollazzo  R Frank  G Cesareni 《Gene》1985,37(1-3):199-206
We show that the fusion between regulatory sequences present on expression vectors and coding sequences can be efficiently achieved by oligonucleotide-directed mutagenesis. We have constructed single-stranded (ss) expression vectors that facilitate this process. These plasmids derive from vectors that have been used for the synthesis of quantities of proteins in Escherichia coli or RNAs in vitro. By inserting the origin of replication of the ss phage f1 into these plasmids it became possible to package their ss DNA into phage rods. Deletion of unwanted sequences or simple base changes can then be obtained by oligonucleotide-directed mutagenesis using the vector ss DNA as a template. We discuss the results of several experiments where this technique was applied to our expression vectors and we demonstrate the construction of a plasmid which efficiently synthesizes in vitro a regulatory RNA molecule that is involved in the control of plasmid copy number.  相似文献   

12.
We have used temperature gradient gel electrophoresis (TGGE) to measure the progress of local denaturation in closed circular topoisomer DNA as a function of temperature and superhelicity (σ). We describe the versatility of this method as a tool for detecting various conformational modifications of plasmid DNAs. The early melting temperature of a structural transition for any topoisomer is dependent on the value of superhelicity. Supercoiled topoisomers represent a system of molecules that is sensitive to changes in temperature. We show that the topoisomer with the highest absolute value of superhelicity melts earlier than topoisomers with lower values. Thermal sensitivity of highly supercoiled plasmids could play a biologically important role in regulation of replication and expression in cells under thermal stress. The estimated melting temperature for plasmids with σ < –0.05 is very significant because these temperatures for early melting are below physiological temperatures.  相似文献   

13.
The effect of intercalating drugs (the anthracycline group of antibiotics, ethidium bromide, actinomycin D) on stepwise melting of DNA was studied by differential scanning calorimetry (DSC). The DSC DNA melting profile of plasmid pJL3-TB5 DNA (5277 base-pairs in length) consists of seven peaks, and all the intercalators caused shifting of these peaks, particularly those formed at the high temperature ranges, to the higher temperature ranges in a characteristic manner depending upon the binding strength of the drug. The analysis of the anthracycline group of antibiotics, such as aclacinomycin A, daunomycin, adriamycin and pyrarubicin, indicates that the difference in binding is due to the sugar moiety at position O-7 of the chromophore in these antibiotics. Analysis on the basis of the helix-coil transition theory suggests that the anthracycline group of antibiotics interact preferentially with the 5'-CG-3' sequences. The effect of various DNA-binding drugs other than intercalators on stepwise melting of DNA was then studied by DSC. The representative drugs examined were distamycin A, peplomycin, cis-dichlorodiamine-platinum(II) (cis-DDP or cis-Platin) and mitomycin C, which differ in their mode of interaction with DNA; namely, minor groove binding, strand cleavage and intrastrand or interstrand cross-linking. Distamycin A caused shifting of the DSC peaks at the low temperature ranges to a higher temperature range, whereas peplomycin and cis-DDP caused shifting of all the DSC peaks to form a broad peak at a lower temperature range, suggesting that the DSC DNA melting profiles are affected in a characteristic manner depending upon the interaction mode of the drug.  相似文献   

14.
C Baldari  G Cesareni 《Gene》1985,35(1-2):27-32
We describe the construction and properties of pEMBLY plasmids. They belong to a new family of yeast shuttle vectors which are derived from plasmid vector pEMBL9 and offer the following improvement: relatively small size; large number of cloning sites; screening for insert-containing plasmids on indicator plates; different combinations of genes which complement auxotrophic deficiencies and sequences that support DNA replication in Saccharomyces cerevisiae; and ability to isolate the plasmid DNA in single-stranded (ss) form. The yeast S. cerevisiae can be efficiently transformed by these plasmids in both the ss and double-stranded (ds) forms. Finally, the presence of the phage f1 intergenic region allows one to obtain the cloned sequences in the ss form upon infection with the wild-type ss phage [Dotto et al., Virology 114 (1981) 463-473].  相似文献   

15.
Taxonomic identification can be difficult when two or more species appear morphologically similar. DNA barcoding based on the sequence of the mitochondrial cytochrome c oxidase 1 gene (COI) is now widely used in identifying animal species. High‐resolution melting analysis (HRM) provides an alternative method for detecting sequence variations among amplicons without having to perform DNA sequencing. The purpose of this study was to determine whether HRM of the COI barcode can be used to distinguish animal species. Using anurans as a model, we found distinct COI melting profiles among three congeners of both Lithobates spp. and Hyla spp. Sequence variations within species shifted the melting temperature of one or more melting domains slightly but do not affect the distinctness of the melting profiles for each species. An NMDS ordination plot comparing melting peak profiles among eight Anuran species showed overlapping profiles for Lithobates sphenocephala and Gastrophryne carolinensis. The COI amplicon for both species contained two melting domains with melting temperatures that were similar between the two species. The two species belong to two different families, highlighting the fact that COI melting profiles do not reveal phylogenetic relationships but simply reflect DNA sequence differences among stretches of DNA within amplicons. This study suggests that high‐resolution melting analysis of COI barcodes (COI‐HRM) may be useful as a simple and rapid method to distinguish animal species that appear morphologically similar.  相似文献   

16.
A 1.5 kb cryptic plasmid was isolated from Helicobacter pylori. Low-stringency hybridization analysis using this plasmid as a DNA probe revealed base sequence homology with other plasmids in this species. Nucleotide sequence analysis identified an open reading frame encoding a putative polypeptide of 25 kDa. This protein showed marked amino acid sequence similarity to replication-initiation proteins commonly found in small plasmids endogenous to Gram-positive bacteria which replicate by the 'rolling-circle' mechanism. Sequence motifs corresponding to the origins-of-replication consensus sequences were found on this cryptic plasmid. DNA and oligonucleotide probes to these plasmid replication sequences were used in hybridization analysis to identify similar sequences in other H. pylori plasmids. We believe this is the first plasmid isolated from a Gram-negative bacterium to show replication determinants characteristic of the 'rolling-circle' group of plasmids from Gram-positive bacteria. The cloned plasmid will be used to develop a shuttle-vector for H. pylori.  相似文献   

17.
We have used DNase I footprinting and fluorescence melting studies to study the interaction of the hairpin polyamide Im-Py-Py-Py-(R)H2Ngamma-Im-Py-Py-Py-beta-Dp with its preferred binding sites (5'-WGWWCW; W=A or T) and other sequences. DNase I footprinting confirmed that the ligand binds to the sequence AGAACA at nanomolar concentrations and that changing the terminal A to G causes a dramatic decrease in affinity, while there was no interaction with the reverse sequence WCWWGW. Fluorescence melting studies with 11-mer duplexes showed that the polyamide had very different effects on the forward (TGWWCT) and reverse (TCTAGT) sequences. At low concentrations, the polyamide produced biphasic melting curves with TGATCT, TGTACT and TGAACT, suggesting a strong interaction. In contrast, the melting profiles with TCTAGT were always monophasic and showed much smaller concentration dependent changes in Tm. The polyamide also showed weak binding to the sequence TGATCT when one of the central AT pairs was replaced with an AC mismatch. These melting profiles were compared with those produced by the AT-selective minor groove binding agents distamycin and Hoechst 33258 at the same sites and at similar sequences containing A5 and (AT)3, which are expected to bind distamycin in the 1:1 and 2:1 modes, respectively. These ligands produced simple monophasic melting curves in which the Tm steadily increased as the ligand concentration was raised.  相似文献   

18.
19.
Thermal denaturation of the B form of double-stranded DNA has been probed by differential scanning calorimetry (DSC) and Raman spectroscopy of 160 base pair (bp) fragments of calf thymus DNA. The DSC results indicate a median melting temperature Tm = 75.5 degrees C with calorimetric enthalpy change delta Hcal = 6.7 kcal/mol (bp), van't Hoff enthalpy change delta HVH = 50.4 kcal/mol (cooperative unit), and calorimetric entropy change delta Scal = 19.3 cal/deg.mol (bp), at the experimental conditions of 55 mg DNA/ml in 5 mM sodium cacodylate at pH 6.4. The average cooperative melting unit (nmelt) comprises 7.5 bp. The Raman signature of 160 bp DNA is highly sensitive to temperature. Analyses of several conformation-sensitive Raman bands indicate the following ranges for thermodynamic parameters of melting: 43 < delta HVH < 61 kcal/mol (cooperative unit), 75 < Tm < 80 degrees C and 6 < (nmelt) < 9 bp, consistent with the DSC results. The changes observed in specific Raman band frequencies and intensities as a function of temperature reveal that thermal denaturation is accompanied by disruption of Watson-Crick base pairs, unstacking of the bases and disordering of the B form backbone. These three types of structural change are highly correlated throughout the investigated temperature range of 20 to 93 degrees C. Raman bands diagnostic of purine and pyrimidine unstacking, conformational rearrangements in the deoxyribose-phosphate moieties, and changes in environment of phosphate groups have been identified. Among these, bands at 834 cm-1 (due to a localized vibration of the phosphodiester group), 1240 cm-1 (thymine ring) and 1668 cm-1 (carbonyl groups of dT, dG and dC), are shown by comparison with DSC results to be the most reliable quantitative indicators of DNA melting. Conversely, the intensities of Raman marker bands at 786 cm-1 (cytosine ring), 1014 cm-1 (deoxyribose ring) and 1092 cm-1 (phosphate group) are largely invariant to melting and are proposed as appropriate standards for intensity normalizations.  相似文献   

20.
Measuring the reversible thermal unfolding of enzymes is valuable for quantifying the effects of environmental factors on the thermodynamic stability of proteins. The thermal unfolding behavior of enzymes is typically studied using calorimetry or optical techniques such as circular dichroism, fluorescence, or light scattering. These techniques often have practical limitations and usually require the protein to be electrophoretically pure. An alternative technique for analyzing the thermodynamic stability of enzymes is to estimate the melting curve from temperature-activity data. This technique does not require electrophoretically pure enzyme, provided the sample does not have competing enzymatic activities or proteins which can affect enzyme stability (e.g., proteases). Moreover, small amounts of contaminant proteins should not affect the results as long as enzymatic assays are performed at low protein concentrations where nonspecific protein-protein interactions are negligible. To illustrate this technique, the melting curve for beta-galactosidase from Escherichia coli in the presence of 1 mM EDTA, and the shift caused by adding 1 mM Mg(+2), were calculated from activity-temperature data. Melting temperatures predicted from activity-temperature data compared closely with those obtained using other techniques. Application of this analysis to multisubstrate enzymes is illustrated by estimating the melting profiles for partially purified hydrogenases from several thermophilic Methanococcii. Limitations and important considerations for estimating melting profiles from activity-temperature data are discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号