首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead molecules identified by combinatorial chemistry approaches are preferred starting points for straightforward improvements of compound profiles. Structure-guided rationales can be supported and complemented by systematic variations based on the modular nature of the molecules. A peptoidic compound (CGP 64222), previously identified from a sequential unrandomization process, was shown to specifically inhibit the interaction between the HIV-1 trans-activator Tat and its RNA response element TAR. To improve the compound's pharmaceutical attractiveness an approach to reduce both, size and number of charges was pursued. Because this resulted in activity decrease, parallel synthesis with variations on one rationally defined position aimed at the identification of structural determinants was undertaken to regain in vitro activity in biochemical and cellular Tat-TAR interaction assays. As a result CGP74026 was identified, a drastically simplified but highly active Tat antagonist, which is able to block HIV-1 replication even in primary human cells.  相似文献   

2.
Current approaches used to identify protein-binding small molecules are not suited for identifying small molecules that can bind emerging RNA drug targets. By docking small molecules onto an RNA dynamic ensemble constructed by combining NMR spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from HIV type 1 (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with high affinity and inhibit its interaction with a Tat peptide in vitro (K(i) values of 710 nM-169 μM). One compound binds HIV-1 TAR with marked selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T-cell lines and HIV replication in an HIV-1 indicator cell line (IC(50) ~23.1 μM).  相似文献   

3.
4.
5.
RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by TB-CP-6.9a. This cyclic peptide was derived from a TAR-binding loop that emerged during lab evolution of a TAR-binding protein (TBP) family. Here we synthesized and characterized a next-generation, cyclic-peptide library based on the TBP scaffold. We sought to identify conserved RNA-binding interactions and the influence of cyclization linkers on RNA binding and antiviral activity. A diverse group of cyclization linkers, encompassing disulfide bonds to bicyclic aromatic staples, was used to restrain the cyclic peptide geometry. Thermodynamic profiling revealed specific arginine-rich sequences with low to submicromolar affinity driven by enthalpic and entropic contributions. The best compounds exhibited no appreciable off-target binding to related molecules, such as BIV TAR and human 7SK RNAs. A specific arginine-to-lysine change in the highest affinity cyclic peptide reduced TAR binding by tenfold, suggesting that TBP-derived cyclic peptides use an arginine-fork motif to recognize the TAR major groove while differentiating the mode of binding from other TAR-targeting molecules. Finally, we showed that HIV infectivity in cell culture was reduced in the presence of cyclic peptides constrained by methylene or naphthalene-based linkers. Our findings provide insight into the molecular determinants required for HIV-1 TAR recognition and antiviral activity. These findings are broadly relevant to the development of antivirals that target RNA molecules.  相似文献   

6.
The interaction between the arginine-rich motif (ARM) of the human immunodeficiency virus (HIV) Tat protein and TAR RNA is essential for Tat activation and viral replication. Two related lentiviruses, bovine immunodeficiency virus (BIV) and Jembrana disease virus (JDV), also require Tat ARM-TAR interactions to mediate activation, but the viruses have evolved different RNA-binding strategies. Interestingly, the JDV ARM can act as a "chameleon," adopting both the HIV and BIV TAR binding modes. To examine how RNA-protein interactions may evolve in a viral context and possibly to identify peptides that recognize HIV TAR in novel ways, we devised a retroviral system based on HIV replication to amplify and select for RNA binders. We constructed a combinatorial peptide library based on the BIV Tat ARM and identified peptides that, like the JDV Tat ARM, also function through HIV TAR, revealing unexpected sequence characteristics of an RNA-binding chameleon. The results suggest that a retroviral screening approach may help identify high-affinity TAR binders and may provide new insights into the evolution of RNA-protein interactions.  相似文献   

7.
The interaction of HIV-1 Tat protein with its recognition sequence, the trans-activation responsive region TAR is a potential target for drug discovery against HIV infection. We show by use of an in vitro competition filter binding interference assay that synthetic oligodeoxyribonucleotides complementary to the HIV-1 TAR RNA apical stem-loop and bulge region inhibit the binding of Tat protein or a Tat peptide (residues 37-72) better than two small molecules that have been shown to bind TAR RNA, Hoechst 33258 and neomycin B. The inhibition is not sensitive to length between 13 and 16 residues or precise positioning but shorter oligonucleotides are less effective. Enhanced inhibition was obtained for a 16-mer 2'-O-methyl oligoribonucleotide but not for C5-propyne pyrimidine-substituted oligonucleotides. Control non-antisense oligonucleotides were occasionally also effective in filter binding interference but only the complementary antisense 2'-O-methyl oligoribonucleotide was effective in gel mobility shift assays in direct TAR binding or in interference with Tat peptide binding to the TAR stem-loop. This is the first demonstration of effective inhibition of the Tat-TAR interaction by nuclease-stabilized oligonucleotide analogues.  相似文献   

8.
9.
为了抑制Tat蛋白的反式激活作用,在细胞内大量表达外源TARRNA使其与Tat蛋白结合,从而竞争性抑制其与HIV-1LTR的TARRNA元件结合.构建了以HIV-1LTRYL158(-158~+180)为启动子,分别含有4,8和15个拷贝的TAR-CoreRNA诱饵(decoy)表达质粒;以荧光酶基因为报告基因,检测了瞬时共转染体系中含不同拷贝数的TAR-CoreDNA转录产物对Tat蛋白反式激活作用的影响.结果证明,TAR-CoreRNA诱饵对Tat蛋白活性具有很强的抑制作用,其抑制程度与TAR-CoreDNA串联体的拷贝数有关.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Chen H  He J  Fong S  Wilcox G  Wood C 《Journal of virology》2000,74(6):2703-2713
Jembrana disease virus (JDV) is a bovine lentivirus genetically similar to bovine immunodeficiency virus; it causes an acute and sometimes fatal disease in infected animals. This virus carries a very potent Tat that can strongly activate not only its own long terminal repeat (LTR) but also the human immunodeficiency virus (HIV) LTR. In contrast, HIV Tat cannot reciprocally activate the JDV LTR (H. Chen, G. E. Wilcox, G. Kertayadnya, and C. Wood, J. Virol. 73:658-666, 1999). This indicates that in transactivation JDV Tat may utilize a mechanism similar to but not the same as that of the HIV Tat. To further study the similarity of JDV and HIV tat in transactivation, we first tested the responses of a series of HIV LTR mutants to the JDV Tat. Cross-transactivation of HIV LTR by JDV Tat was impaired by mutations that disrupted the HIV type 1 transactivation response element (TAR) RNA stem-loop structure. Our results demonstrated that JDV Tat, like HIV Tat, transactivated the HIV LTR at least partially in a TAR-dependent manner. However, the sequence in the loop region of TAR was not as critical for the function of JDV Tat as it was for HIV Tat. The competitive inhibition of Tat-induced transactivation by the truncated JDV or HIV Tat, which consisted only of the activation domain, suggested that similar cellular factors were involved in both JDV and HIV Tat-induced transactivation. Based on the one-round transfection assay with HIV tat mutant proviruses, the cotransfected JDV tat plasmid can functionally complement the HIV tat defect. To further characterize the effect of JDV Tat on HIV, a stable chimeric HIV carrying the JDV tat gene was generated. This chimeric HIV replicated in a T-cell line, C8166, and in peripheral blood mononuclear cells, which suggested that JDV Tat can functionally substitute for HIV Tat. Further characterization of this chimeric virus will help to elucidate how JDV Tat functions and to explain the differences between HIV and JDV Tat transactivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号