首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Nitroxides block DNA scission and protect cells from oxidative damage.   总被引:1,自引:0,他引:1  
The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H2O2. Oxidative damage induced by H2O2 was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated the H2O2-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H2O2 cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H2O2 toxicity, without lowering H2O2 concentration. To check whether nitroxides protect against O2.(-)-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H2O2, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.  相似文献   

2.
Reactive oxygen species produce oxidized bases, deoxyribose lesions and DNA strand breaks in mammalian cells. Previously, we demonstrated that aldehydic DNA lesions (ADLs) were induced in mammalian cells by 10 mM hydrogen peroxide (H2O2). Interestingly, a bimodal H2O2 dose–response relationship in cell toxicity has been reported for Escherichia coli deficient in DNA repair as well as Chinese hamster ovary (CHO) cells. Furthermore, it has been demonstrated that H2O2 causes single-strand breaks in purified DNA in the presence of iron and induces mitochondrial DNA damage in CHO cells with a biphasic dose–response curve. Here we show that H2O2 produces ADLs at concentrations as low as 0.06 mM in HeLa cells and that lower concentrations of H2O2 were much more efficient at inducing ADLs than higher concentrations. This dose–response curve is strikingly similar to that for cell killing effects in E.coli deficient in DNA repair exposed to H2O2. Interestingly, serial treatment of submillimolar levels of H2O2 induced a massive accumulation of ADLs. The toxicity arising from H2O2 determined by intracellular NAD(P)H in cells correlated well with the formation of ADLs. The addition of dipyridyl, an iron (II)-specific chelator, significantly protected against DNA damage and cell toxicity from submillimolar, but not millimolar, amounts of H2O2. These results suggest that ADLs induced by submillimolar levels of H2O2 may be due to a Fenton-type reaction between H2O2 and intracellular iron ions in mammalian cells.  相似文献   

3.
UVM (ultravioletmodulation of mutagenesis) is a recently describedrecA-independent, inducible mutagenic phenomenon in which prior UV irradiation ofEscherichia coli cells strongly enhances mutation fixation at a site-specific 3-N4-ethenocytosine (?C) lesion borne on a transfected single-stranded M13 DNA vector. Subsequent studies demonstrated that UVM is also induced by alkylating agents, and is distinct from both the SOS response and the adaptive response to alkylation damage. Because of the increasing significance being attributed to oxidative DNA damage, it is interesting to ask whether this class of DNA damage can also induce UVM. By transfecting M13 vector DNA bearing a site-specific?C lesion into cells pretreated with inducing agents, we show here that the oxidative agent H2O2 is a potent inducer of UVM, and that the induction of UVM by H2O2 does not requireoxyR-regulated gene expression. UVM induction by H2O2 appears to be mediated by DNA damage, as indicated by the observation of a concomitant reduction in cellular toxicity and UVM response in OxyRc cells. Available evidence suggests that UVM represents a generalized cellular response to a broad range of chemical and physical genotoxicants, and that DNA damage constitutes the most likely signal for its induction.  相似文献   

4.
DNA strand scission by enzymically generated oxygen radicals   总被引:34,自引:0,他引:34  
Col E1 DNA suffers strand scission when exposed to xanthine oxidase acting aerobically on xanthine. Strand scission was prevented by low levels of superoxide dismutase or of catalase. Mannitol, benzoate, or histidine, which scavenge OH · but which react with neither O2? nor H2O2, also prevented strand scission. Replacement of 0.1 mm ethylenediaminetetraacetate by 0.1 mm diethylenetriaminepentaacetate prevented strand scission. Three mechanisms for the production of OH ·, or of a comparably powerful oxidant, by metal-catalyzed interaction of O2? with H2O2, are proposed.  相似文献   

5.
The possible mutagenic effects induced by singlet oxygen, which is formed during UVA irradiation of bacterial cells pretreated with 8-methoxypsoralen (8-MOP), were investigated. As genetic endpoint, back mutation from arg56? to arg+ was assayed in strain Escherichia coli K-12/343/113/uvrB; this system, in preliminary experiments, was rather sensitive to 8-MOP-induced photodynamic effects. To assess the involvement of singlet oxygen (1O2) in the mutation induction process, 2 tests were applied, namely, comparative mutation induction in D2O and in H2O media (pH 7.0) and quenching of 1O2 with 1,4-diazabicyclo[2.2.2]octane (DABCO).When photodynamy was performed with the indicator cells suspended in D2O buffer, the mutagenic effect was substantially higher than that obtained with cells suspended in H2O buffer; this increase was even more pronounced when the incubation mixtures were thoroughly oxygenated before irradiation. D2O itself was not mutagenic under the present experimental conditions. Addition of DABCO in concentrations of 0.1–10 mM to the irradiation mixtures effectively reduced the number of 8-MOP-induced mutant yields by about 40%. DABCO itself had no effect on cell viability or on spontaneous mutation frequency under our experimental conditions.From these 2 sets of results, and from the preliminary findings that the photomutagenic effect of 8-MOP is higher in the uvrB derivative than in the corresponding excision-repair-proficient parent strain, which is in concordance with previous observations in other E coli strains, it can be concluded that 1O2 generated upon UVA irradiation of 8-MOP solutions is probably responsible for part of the observed genetic effects.  相似文献   

6.
Aerobic organisms contain antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, to protect them from both direct and indirect effects of reactive oxygen species, such as O2·− and H2O2. Previous work by others has shown that Escherichia coli mutants lacking SOD not only are more susceptible to DNA damage and killing by H2O2 but also contain larger pools of intracellular free iron. The present study investigated if SOD-deficient E. coli cells are exposed to increased levels of hydroxyl radical (·OH) as a consequence of the reaction of H2O2 with this increased iron pool. When the parental E. coli strain AB1157 was exposed to H2O2 in the presence of an α-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN)–ethanol spin-trapping system, the 4-POBN–·CH(CH3)OH spin adduct was detectable by electron paramagnetic resonance (EPR) spectroscopy, indicating ·OH production. When the isogenic E. coli mutant JI132, lacking both Fe- and Mn-containing SODs, was exposed to H2O2 in a similar manner, the magnitude of ·OH spin trapped was significantly greater than with the control strain. Preincubation of the bacteria with the iron chelator deferoxamine markedly inhibited the magnitude of ·OH spin trapped. Exogenous SOD failed to inhibit ·OH formation, indicating the need for intracellular SOD. Redox-active iron, defined as EPR-detectable ascorbyl radical, was greater in the SOD-deficient strain than in the control strain. These studies (i) extend recent data from others demonstrating increased levels of iron in E. coli SOD mutants and (ii) support the hypothesis that a resulting increase in ·OH formation generated by Fenton chemistry is responsible for the observed enhancement of DNA damage and the increased susceptibility to H2O2-mediated killing seen in these mutants lacking SOD.  相似文献   

7.
Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H2O2 concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H2O2 concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H2O2 concentration of the cells. However, the H2O2 concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H2O2 elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H2O2 concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase.  相似文献   

8.
Copper/zinc (Cu/ZnSOD) and manganese (MnSOD) superoxide dismutases which catalyze the dismutation of toxic superoxide anion, O inf2 sup– , to O2 and H2O2, play a major role in protecting cells from toxicity of oxidative stress. However, cells overexpressing either form of the enzyme show signs of toxicity, suggesting that too much SOD may he injurious to the cell. To elucidate the possible mechanism of this cytotoxicity, the effect of SOD on DNA and RNA strand scission was studied. High purity preparations of Cu/ZnSOD and MnSOD were tested in an in vitro assay in which DNA cleavage was measured by conversion of phage X174 supercoiled double-stranded DNA to open circular and linear forms. Both types of SOD were able to induce DNA strand scission generating single- and double-strand breaks in a process that required oxygen and the presence of fully active enzyme. The DNA strand scission could be prevented by specific anti-SOD antibodies added directly or used for immunodepletion of SOD. Requirement for oxygen and the effect of Fe(II) and Fe(III) ions suggest that cleavage of DNA may be in part mediated by hydroxyl radicals formed in Fenton-type reactions where enzyme-bound transition metals serve as a catalyst by first being reduced by superoxide and then oxidized by H2O2. Another mechanism was probably operative in this system, since in the presence of magnesium DNA cleavage by SOD was oxygen independent and not affected by sodium cyanide. It is postulated that SOD, by having a similar structure to the active center of zinc-containing nucleases, is capable of exhibiting non-specific nuclease activity causing hydrolysis of the phosphodiester bonds of DNA and RNA. Both types of SOD were shown to effectively cleave RNA. These findings may help explain the origin of pathology of certain hereditary diseases genetically linked to Cu/ZnSOD gene.  相似文献   

9.
Oxidative-stress-driven lipid peroxidation (LPO) is involved in the pathogenesis of several human diseases, including cancer. LPO products react with cellular proteins changing their properties, and with DNA bases to form mutagenic etheno-DNA adducts, removed from DNA mainly by the base excision repair (BER) pathway.One of the major reactive aldehydes generated by LPO is 4-hydroxy-2-nonenal (HNE). We investigated the effect of HNE on BER enzymes in human cells and in vitro. K21 cells pretreated with physiological HNE concentrations were more sensitive to oxidative and alkylating agents, H2O2 and MMS, than were untreated cells. Detailed examination of the effects of HNE on particular stages of BER in K21 cells revealed that HNE decreases the rate of excision of 1,N6-ethenoadenine (ɛA) and 3,N4-ethenocytosine (ɛC), but not of 8-oxoguanine. Simultaneously HNE increased the rate of AP-site incision and blocked the re-ligation step after the gap-filling by DNA polymerases. This suggested that HNE increases the number of unrepaired single-strand breaks (SSBs) in cells treated with oxidizing or methylating agents. Indeed, preincubation of cells with HNE and their subsequent treatment with H2O2 or MMS increased the number of nuclear poly(ADP-ribose) foci, known to appear in cells in response to SSBs. However, when purified BER enzymes were exposed to HNE, only ANPG and TDG glycosylases excising ɛA and ɛC from DNA were inhibited, and only at high HNE concentrations. APE1 endonuclease and 8-oxoG-DNA glycosylase 1 (OGG1) were not inhibited. These results indicate that LPO products exert their promutagenic action not only by forming DNA adducts, but in part also by compromising the BER pathway.  相似文献   

10.
Hydrogen peroxide (H2O2) is commonly formed in microbial habitats by either chemical oxidation processes or host defense responses. H2O2 can penetrate membranes and damage key intracellular biomolecules, including DNA and iron-dependent enzymes. Bacteria defend themselves against this H2O2 by inducing a regulon that engages multiple defensive strategies. A previous microarray study suggested that yaaA, an uncharacterized gene found in many bacteria, was induced by H2O2 in Escherichia coli as part of its OxyR regulon. Here we confirm that yaaA is a key element of the stress response to H2O2. In a catalase/peroxidase-deficient (Hpx) background, yaaA deletion mutants grew poorly, filamented extensively, and lost substantial viability when they were cultured in aerobic LB medium. The results from a thyA forward mutagenesis assay and the growth defect of the yaaA deletion in a recombination-deficient (recA56) background indicated that yaaA mutants accumulated high levels of DNA damage. The growth defect of yaaA mutants could be suppressed by either the addition of iron chelators or mutations that slowed iron import, indicating that the DNA damage was caused by the Fenton reaction. Spin-trapping experiments confirmed that Hpx yaaA cells had a higher hydroxyl radical (HO) level. Electron paramagnetic resonance spectroscopy analysis showed that the proximate cause was an unusually high level of intracellular unincorporated iron. These results demonstrate that during periods of H2O2 stress the induction of YaaA is a critical device to suppress intracellular iron levels; it thereby attenuates the Fenton reaction and the DNA damage that would otherwise result. The molecular mechanism of YaaA action remains unknown.  相似文献   

11.
DNA is constantly damaged by physical and chemical factors, including reactive oxygen species (ROS), such as superoxide radical (O2 ), hydrogen peroxide (H2O2) and hydroxyl radical (•OH). Specific mechanisms to protect and repair DNA lesions produced by ROS have been developed in living beings. In Escherichia coli the SOS system, an inducible response activated to rescue cells from severe DNA damage, is a network that regulates the expression of more than 40 genes in response to this damage, many of them playing important roles in DNA damage tolerance mechanisms. Although the function of most of these genes has been elucidated, the activity of some others, such as dinF, remains unknown. The DinF deduced polypeptide sequence shows a high homology with membrane proteins of the multidrug and toxic compound extrusion (MATE) family. We describe here that expression of dinF protects against bile salts, probably by decreasing the effects of ROS, which is consistent with the observed decrease in H2O2-killing and protein carbonylation. These results, together with its ability to decrease the level of intracellular ROS, suggests that DinF can detoxify, either direct or indirectly, oxidizing molecules that can damage DNA and proteins from both the bacterial metabolism and the environment. Although the exact mechanism of DinF activity remains to be identified, we describe for the first time a role for dinF.  相似文献   

12.
A possible mechanism of resistance to hydrogen peroxide (H2O2) in Vibrio rumoiensis, isolated from the H2O2-rich drain pool of a fish processing plant, was examined. When V. rumoiensis cells were inoculated into medium containing either 5 mM or no H2O2, they grew in similar manners. A spontaneous mutant strain, S-4, derived from V. rumoiensis and lacking catalase activity did not grow at all in the presence of 5 mM H2O2. These results suggest that catalase is inevitably involved in the resistance and survival of V. rumoiensis in the presence of H2O2. Catalase activity was constitutively present in V. rumoiensis cells grown in the absence of H2O2, and its occurrence was dependent on the age of the cells, a characteristic which is observed for the HP II-type catalase of Escherichia coli. The presence of the HP II-type catalase in V. rumoiensis cells was evidenced by partial sequencing of the gene encoding the HP II-type catalase from this organism. A notable difference between V. rumoiensis and E. coli is that catalase is accumulated at very high levels (~2% of the total soluble proteins) in V. rumoiensis, in contrast to the case for E. coli. When V. rumoiensis cells which had been exposed to 5 mM H2O2 were centrifuged, most intracellular proteins, including catalase, were recovered in the medium. On the other hand, when V. rumoiensis cells were grown on plates containing various concentrations of H2O2, individual cells had a colony-forming ability inferior to those of E. coli, Bacillus subtilis, and Vibrio parahaemolyticus. Thus, it is suggested that when V. rumoiensis cells are exposed to high concentrations of H2O2, most cells will immediately be broken by H2O2. In addition, the cells which have had little or no damage will start to grow in a medium where almost all H2O2 has been decomposed by the catalase released from broken cells.  相似文献   

13.
Escherichia coli B were more susceptible to radiation lethality and showed a greater oxygen enhancement ratio when exposed in dilute suspension (1 × 105 cells/ml) than when exposed in dense suspensions (1 × 109 cells/ml). The oxygen enhancement, seen with dilute suspensions, was diminished by superoxide dismutase, catalase, mannitol, or histidine. Heat-denatured superoxide dismutase was without effect. The results are interpreted as indicating a role for O2? plus H2O2 in the oxygen enhancement of radiation lethality, and a scheme is proposed which is consistent with the observations.  相似文献   

14.
Previous studies have demonstrated that phenolic compounds, including genistein (4′,5,7-trihydroxyisoflavone) and resveratrol (3,4′,5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in φX-174 plasmid DNA. H2O2/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H2O2/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H2O2 suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H2O2/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H2O2 were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

15.
Oxidative stress formed in Escherichia coli cells is known to bring about a complex induction of alternative DNA repair processes, including SOS, SoxRS, and heat-shock response (HSR). The modification by heat shock of the expression ofsfiA and soxS genes induced by oxidative agents H2O2, menadione and 4-nitroquinoline-1-oxide (4NQO) was studied for the first time. Quantitative parameters of gene expression were examined inE. coli strains with fused genes (promoters) sfiA::lacZ and soxS::lacZ.The expression of these genes induced by cell treatment with H2O2, but not menadione or 4NQO, was shown to decrease selectively after exposure to heat shock. Since genetic activity of menadione and 4NQO depends mainly on the formation of superoxide anion ,O¯ 2 it is assumed that the effect of selective inhibition by heat-shock of sfiA and soxS gene expression in experiments with H2O2 is connected with activity of DnaK heat shock protein, which, unlike other heat-shock proteins, cannot be induced by superoxide anion O¯ 2.  相似文献   

16.
The wild-type strain and mutants ofEscherichia coli lacking Mn-superoxide dismutase (Sod A) or Fe-superoxide dismutase (Sod B) are compared for their sensitivity to the H2O2 insult (exposure for 15 min at 37°C, in M9 salts). Whereas mode one killing is similar in superoxide dismutase mutants and wild-type cells, the latter strain appears to be more resistant than the former ones to mode two lethality. Furthermore, Sod B cells, as well as wild-type cells but unlike Sod A cells, are capable of reversing the toxicity of the oxidant (even in the presence of chloramphenicol), this effect being observed by gradually increasing the H2O2 concentration from 2.5 to 10 mM. It is concluded that (a) superoxide ions may not be involved in the production of mode one killing by H2O2, although further experiments are needed to validate or modify this hypothesis; (b) superoxide ions mediate mode two killing by H2O2, possibly by reducing trivalent iron to the divalent form; and (c) the intervening zone of partial resistance observed in wild-type and Sod B cells exposed to intermediate H2O2 concentrations is not a consequence of Mn-superoxide dismutase induction; it would appear, however, that cells lacking this superoxide dismutase isoenzyme are not proficient in this acquired response.  相似文献   

17.
We demonstrated that oxidative stress plays a role in freeze-thaw-induced killing of Campylobacter coli following analysis of mutants deficient in key antioxidant functions. Superoxide anions, but not H2O2, were formed during the freeze-thaw process. However, a failure to detoxify superoxide anions may lead to spontaneous disproportionation of the radicals to H2O2.  相似文献   

18.
High-dose ascorbic acid (AsA) treatment, known as pharmacological AsA, has been shown to exert carcinostatic effects in many types of cancer cells and in vivo tumour models. Although pharmacological AsA has potential as a complementary and alternative medicine for anticancer treatment, its effects on human tongue carcinoma have not yet been elucidated. In this study, we investigated the effect of AsA treatment on human tongue carcinoma HSC-4 cells compared with non-tumourigenic tongue epithelial dysplastic oral keratinocyte (DOK) cells. Our results show that treatment with 1 and 3?mM of AsA for 60?min preferentially inhibits the growth of human tongue carcinoma HSC-4 over DOK cells. Furthermore, AsA-induced effects were accompanied by increased intracellular oxidative stress and were repressed by treatment with a hydrogen peroxide (H2O2) scavenger catalase and a superoxide anion radical (O2?) scavenger, tempol. Time-lapse observation and thymidine analog EdU incorporation revealed that AsA treatment induces not only cell death but also suppression of DNA synthesis and cell growth. Moreover, the growth arrest was accompanied by abnormal cellular morphologies whereby cells extended dendrite-like pseudopodia. Taken together, our results demonstrate that AsA treatment can induce carcinostatic effects through induction of cell death, growth arrest, and morphological changes mediated by H2O2 and O2? generation. These findings suggest that high-dose AsA treatment represents an effective treatment for tongue cancer as well as for other types of cancer cells.  相似文献   

19.
Cultured cells of rose (Rosa damascena) treated with an elicitor derived from Phytophthora spp. and suspension-cultured cells of French bean (Phaseolus vulgaris) treated with an elicitor derived from the cell walls of Colletotrichum lindemuthianum both produced H2O2. It has been hypothesized that in rose cells H2O2 is produced by a plasma membrane NAD(P)H oxidase (superoxide synthase), whereas in bean cells H2O2 is derived directly from cell wall peroxidases following extracellular alkalinization and the appearance of a reductant. In the rose/Phytophthora spp. system treated with N,N-diethyldithiocarbamate, superoxide was detected by a N,N′-dimethyl-9,9′-biacridium dinitrate-dependent chemiluminescence; in contrast, in the bean/C. lindemuthianum system, no superoxide was detected, with or without N,N-diethyldithiocarbamate. When rose cells were washed free of medium (containing cell wall peroxidase) and then treated with Phytophthora spp. elicitor, they accumulated a higher maximum concentration of H2O2 than when treated without the washing procedure. In contrast, a washing treatment reduced the H2O2 accumulated by French bean cells treated with C. lindemuthianum elicitor. Rose cells produced reductant capable of stimulating horseradish (Armoracia lapathifolia) peroxidase to form H2O2 but did not have a peroxidase capable of forming H2O2 in the presence of reductant. Rose and French bean cells thus appear to be responding by different mechanisms to generate the oxidative burst.  相似文献   

20.
Oxygen metabolites generated by macrophages may exert membrane injury to various cells. In this study reagents, which induce superoxide (O2?) and hydrogen peroxide (H2O2) production by paraffin oil elicited adherence purified guinea pig peritoneal macrophages (GPPM), were studied as to their potential to activate macrophage-mediated cytolysis (MMC) against allogeneic and autologous erythrocytes. Strong MMC reactions were activated by 12-O-tetra-decanoylphorbol-13-acetate (TPA), methylated TPA (4-O-MeTPA), opsonized zymosan, and out of six lectins tested, by wheat germ agglutinin (WGA) and concanavalin A (Con A). The cGMP elevators: sodium nitroprusside and sodium azide and the formyl-methionyl-type chemotactic peptides were ineffective. MMC activated by TPA, 4-O-MeTPA, WGA, and Con A was unaffected by colchicine and partially inhibited by cytochalasin B. TPA-activated MMC was abolished by diethyldithiocarbamate (DDC) (inhibitor of superoxide dismutase) and catalase, while WGA and Con A-activated MMC were only partially inhibited by DDC and unaffected by catalase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号