首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Finite-element models of 29 intact molars were created and subjected to cleavage-type loads in order to assess differences in the biomechanical behaviour of molars. A simulated food particle, which was one-third the size of the intercuspal distance and had the properties of a Mezzettia seed, was pushed onto the occlusal basin of these models at various angles, resulting in either both or one particular cusp being preferentially loaded. In all cases, the maximum tensile stresses occurred in enamel at the intercuspal fissure. With regard to first maxillary molars, supporting (functional) and guiding (nonfunctional) cusps apparently dissipate loads equally well, whereas, in second and third maxillary molars, the guiding cusps are better designed to resist loads. Overall, lingual cusps of maxillary posterior molars dissipate loads poorly. Conversely, loads exerted toward supporting cusps of mandibular molars are consistently well dissipated, regardless of position along the tooth row. Because the directions of loads to which these teeth are best adapted change along the tooth row, it seems reasonable to suggest that these may correlate with the well-documented structural and functional orofacial complex. This study indicates that the biomechanical behaviour of molars and the orofacial skeleton are likely to have undergone complementary directional changes during evolution. Consequently, caution must be exercised in making inferences about dietary adaptations of extinct species on the basis of isolated teeth or fragmentary gnathic remains without proper regard of the orofacial skeleton as a whole. Am J Phys Anthropol 106:467–482, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Differences in scapular morphology between modern humans and the African and lesser apes are associated with the distinct locomotor habits of these groups. However, several traits, particularly aspects of the supraspinous fossa, are convergent between Homo and Pongo—an unexpected result given their divergent locomotor habits. Many morphological assessments of the scapula rely on the limited number of static landmarks available, and traditional approaches like these tend to oversimplify scapular shape. Here, we present the results of two geometric morphometric (GM) analyses of hominoid supraspinous fossa shape—one employing five homologous landmarks and another with 83 sliding semilandmarks—alongside those of traditional methods to evaluate if three-dimensional considerations of fossa shape afford more comprehensive insights into scapular shape and functional morphology. Traditional measures aligned Pongo and Homo with narrow and transversely oriented supraspinous fossae, whereas African ape and Hylobates fossae are broader and more obliquely situated. However, our GM results highlight that much of the convergence between Homo and Pongo is reflective of their more medially positioned superior angles. These approaches offered a more complete assessment of supraspinous shape and revealed that the Homo fossa, with an intermediate superior angle position and moderate superoinferior expansion, is actually reminiscent of the African ape shape. Additionally, both Pongo and Hylobates were shown to have more compressed fossae, something that has not previously been identified through traditional analyses. Thus, the total morphological pattern of the Pongo supraspinous fossa is unique among hominoids, and possibly indicative of its distinctive locomotor habits. Am J Phys Anthropol 156:498–510, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
ERRATUM: Macho GA and Spears IR. 1999. Effects of Loading on the Biomechanical Behavior of Molars of Homo, Pan, and Pongo. Am J Phys Anthropol 109:211–227. The correct title of the article is given above. The word “biochemical” should be read as “biomechanical.”  相似文献   

4.
Ectocranial suture fusion patterns have been shown to contain biological and phylogenetic information. Previously the patterns of Homo, Pan, and Gorilla have been described. These data reflect the phylogenetic relationships among these species. In this study, we applied similar methodology to Pongo to determine the suture synostosis progression of this genus, and to allow comparison to previously reported data on other large‐bodied hominoids. We hypothesized these data would strengthen the argument that suture synostosis patterns reflect the phylogeny of primate taxa. Results indicate that the synostosis of vault sutures in Pongo is similar to that reported for Gorilla (excluding Pan and Homo). However, the lateral‐anterior pattern of fusion, in which there is a strong superior to inferior pattern, for Pongo is unique among these species, reflecting its phylogenetic distinctness among great ape taxa. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
Dental dimensions and distributions of dental dimensions of males and females were compared for great apes (Pan, Gorilla, and Pongo, and humans (Homo). The results were examined and discussed with reference to fossil primates Sivapithecus and Ramapithecus. The analyses focused on patterns of sexual dimorphism, both with regard to mean dimensions and the distribution of those dimensions. Sex differences in mean canine dimensions were large and significant for Gorilla and Pongo, significant but smaller for Pan, and small but occasionally significant for Homo. The dispersions of measures were greater for males than for females in Gorilla and Pan but did not differ significantly for Pongo or Homo. Examination of the noncanine teeth revealed complex sex differences. In the anterior teeth, sex differences in mean dimensions were generally apparent for Gorilla and Pongo, less so for Pan, and least of all in Homo. The patterns of dispersion of measures of anterior teeth differed markedly from those of the canines. Pan exhibited the same pattern for anterior and canine teeth. Gorilla showed the opposite pattern. Pongo and Homo showed similar dispersions for males and females in many cases. Sex differences in posterior teeth followed the pattern of the canines for Gorilla and were absent for Pan. Pongo exhibited mean differences in dimensions across sex, but dispersions were similar. The pattern for Homo was most like that of Pongo, but with fewer significant differences. The genera differed with regard to the number of significant differences in means or dispersions along the tooth row. It is clear that the patterns of dimorphism differ qualitatively across all extant genera of great apes and humans. It appears that the pattern for Homo most closely resembles that of Ramapithecus, whereas Pongo most closely resembles Sivapithecus. The patterns for Gorilla and Pan appear to be unlike either of the fossil forms. It is suggested that the qualitatively distinct patterns of dental sexual dimorphism indicate substantial flexibility during recent primate evolution and that the degree of structural flexibility demonstrated provides a basis for appreciating potential for plasticity of gender differences in behavioral, social, and cultural systems.  相似文献   

7.
The distal half of a right human humerus (E.898), recovered ex situ in 1925 by Hrdli?ka at the Broken Hill Mine, Kabwe, Zambia, has figured prominently in assessments of Middle Pleistocene Homo postcranial variation and of the phylogenetic polarity and functional anatomy of Pleistocene Homo upper limb morphology. Reassessment of distal humeral features that distinguish modern human and some archaic Homo humeri, especially relative olecranon breadth and medial and lateral pillar thicknesses, confirm previous studies placing it morphologically close to recent humans, as well as possibly to Early Pleistocene Homo. However, it completely lacks stratigraphic context, and there is faunal and archeological evidence for human activity at Broken Hill from the Middle Pleistocene to the Holocene. Given its uncertain geological age and modern human morphology, the Broken Hill E.898 humerus should not be used in analyses of Pleistocene humans until it is securely dated. Am J Phys Anthropol 149:312–317, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Analyses of dental function are an essential component of the study of human evolution. However, with few exceptions, they have utilized the traditional analogizing method of comparative anatomy, and have assumed rather than demonstrated that proposed adaptive characters confer a performance benefit. Since food reduction is a mechanical process, it is appropriate to measure performance using mechanical parameters, specifically the ability of a given morphology to induce failure in food particle by either of the two major regimes: crush and shear, corresponding to simple stresses (tensile and compressive) and shear stress, respectively. We apply finite elements stress analysis to model the relationship between the angulation of the intercuspal occlusal surfaces in a “puncture crushing” mode of mastication. On the basis of morphological data acquired from sectioned great ape molars, we have predicted the nature, magnitude and distribution of stress in a standard food particle by models representing each morphotype. Results indicate that the blunt-cusped molars ofHomo, the gradually-sloping supporting (buccal) cusps but high-angled guiding (lingual) cusps of the lower molars ofPan, and the high angled occlusal surfaces ofGorillaare all more likely to fracture small food particles by shear, while the gradually sloping occlusal surfaces ofPongomolars are more likely to break them down by “crush”. Mechanisms of food failure induced by molars ofPanandHomowill vary according to the orientation of the tooth–food contacting surfaces, which in turn will vary according to the size of the food particle. These genera may be able to break food down either by shear or by “crush”.  相似文献   

9.
Comparisons of joint surface curvature at the base of the thumb have long been made to discern differences among living and fossil primates in functional capabilities of the hand. However, the complex shape of this joint makes it difficult to quantify differences among taxa. The purpose of this study is to determine whether significant differences in curvature exist among selected catarrhine genera and to compare these genera with hominin1 fossils in trapeziometacarpal curvature. Two 3D approaches are used to quantify curvatures of the trapezial and metacarpal joint surfaces: (1) stereophotogrammetry with nonuniform rational B‐spline (NURBS) calculation of joint curvature to compare modern humans with captive chimpanzees and (2) laser scanning with a quadric‐based calculation of curvature to compare modern humans and wild‐caught Pan, Gorilla, Pongo, and Papio. Both approaches show that Homo has significantly lower curvature of the joint surfaces than does Pan. The second approach shows that Gorilla has significantly more curvature than modern humans, while Pongo overlaps with humans and African apes. The surfaces in Papio are more cylindrical and flatter than in Homo. Australopithecus afarensis resembles African apes more than modern humans in curvatures, whereas the Homo habilis trapezial metacarpal surface is flatter than in all genera except Papio. Neandertals fall at one end of the modern human range of variation, with smaller dorsovolar curvature. Modern human topography appears to be derived relative to great apes and Australopithecus and contributes to the distinctive human morphology that facilitates forceful precision and power gripping, fundamental to human manipulative activities. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc. 1 The term “hominin” refers to members of the tribe Hominini, which includes modern humans and fossil species that are related more closely to modern humans than to extant species of chimpanzees, Wood and Lonergan (2008). Hominins are in the family Hominidae with great apes.  相似文献   

10.
The possibility of a Middle-Late Miocene separation of the human lineage from the lineages leading to the extant great apes, based on paleontological and phenetic evidence, is presented. Middle Miocene Sivapithecus, rather then Early Miocene Dryopithecus, is supported as a last common ancestor of Pongo, Pan, Gorilla, and Homo. Estimates for the branching of the lineages are a maximum of 15 m.y.a. for the Pongo lineage and a range from 14-6 m.y.a. for the Pan, Gorilla, and Ausralopithecus/Homo lineages. Weaknesses of the late divergence hypothesis are discussed.  相似文献   

11.
Previous analyses of hand morphology in Australopithecus afarensis have concluded that this taxon had modern human‐like manual proportions, with relatively long thumbs and short fingers. These conclusions are based on the A.L.333 composite fossil assemblage from Hadar, Ethiopia, and are premised on the ability to assign phalanges to a single individual, and to the correct side and digit. Neither assignment is secure, however, given the taphonomy and sample composition at A.L.333. We use a resampling approach that includes the entire assemblage of complete hand elements at Hadar, and takes into account uncertainties in identifying phalanges by individual, side and digit number. This approach provides the most conservative estimates of manual proportions in Au. afarensis. We resampled hand long bone lengths in Au. afarensis and extant hominoids, and obtained confidence limits for distributions of manual proportions in the latter. Results confirm that intrinsic manual proportions in Au. afarensis are dissimilar to Pan and Pongo. However, manual proportions in Au. afarensis often fall at the upper end of the distribution in Gorilla, and very lower end in Homo, corresponding to disproportionately short thumbs and long medial digits in Homo. This suggests that manual proportions in Au. afarensis, particularly metacarpal proportions, were not as derived towards Homo as previously described, but rather are intermediate between gorillas and humans. Functionally, these results suggest Au. afarensis could not produce precision grips with the same efficiency as modern humans, which may in part account for the absence of lithic technology in this fossil taxon. Am J Phys Anthropol 152:393–406, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Previous research has demonstrated that species and subspecies of extant chimpanzees and bonobos can be distinguished on the basis of the shape of their molar crowns. Thus, there is potential for fossil taxa, particularly fossil hominins, to be distinguished at similar taxonomic levels using molar crown morphology. Unfortunately, due to occlusal attrition, the original crown morphology is often absent in fossil teeth, and this has limited the amount of shape information used to discriminate hominin molars. The enamel–dentine junction (EDJ) of molar teeth preserves considerable shape information, particularly in regard to the original shape of the crown, and remains present through the early stages of attrition. In this study, we investigate whether the shape of the EDJ of lower first and second molars can distinguish species and subspecies of extant Pan. Micro‐computed tomography was employed to non‐destructively image the EDJ, and geometric morphometric analytical methods were used to compare EDJ shape among samples of Pan paniscus (N = 17), Pan troglodytes troglodytes (N = 13), and Pan troglodytes verus (N = 18). Discriminant analysis indicates that EDJ morphology distinguishes among extant Pan species and subspecies with a high degree of reliability. The morphological differences in EDJ shape among the taxa are subtle and relate to the relative height and position of the dentine horns, the height of the dentine crown, and the shape of the crown base, but their existence supports the inclusion of EDJ shape (particularly those aspects of shape in the vertical dimension) in the systematic analysis of fossil hominin lower molars. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
We examined the histology of canine teeth in extant hominoids and provided a comparative database on several aspects of canine development. The resultant data augment the known pattern of differences in aspects of tooth crown formation among great apes and more importantly, enable us to determine the underlying developmental mechanisms responsible for canine dimorphism in them. We sectioned and analyzed a large sample (n = 108) of reliably-sexed great ape mandibular canines according to standard histological techniques. Using information from long- and short-period incremental markings in teeth, we recorded measurements of daily secretion rates, periodicity and linear enamel thickness for specimens of Pan troglodytes, Gorilla gorilla, Pongo pygmaeus and Homo sapiens. Modal values of periodicities in males and females, respectively, are: Pan 7/7; Gorilla 9/10; Pongo 10/10; and Homo 8/8. Secretion rates increase from the inner to the outer region of the enamel cap and decrease from the cuspal towards the cervical margin of the canine crown in all great ape species. Female hominoids tend to possess significantly thicker enamel than their male counterparts, which is almost certainly related to the presence of faster daily secretion rates near the enamel-dentine junction, especially in Gorilla and Pongo. Taken together, these results indicate that sexual differences in canine development are most apparent in the earlier stages of canine crown formation, while interspecific differences are most apparent in the outer crown region. When combined with results on the rate and duration of canine crown formation, the results provide essential background work for larger projects aimed at understanding the developmental basis of canine dimorphism in extant and extinct large-bodied hominoids and eventually in early hominins.  相似文献   

14.
All early (Pliocene–Early Pleistocene) hominins exhibit some differences in proximal femoral morphology from modern humans, including a long femoral neck and a low neck‐shaft angle. In addition, australopiths (Au. afarensis, Au. africanus, Au. boisei, Paranthropus boisei), but not early Homo, have an “anteroposteriorly compressed” femoral neck and a small femoral head relative to femoral shaft breadth. Superoinferior asymmetry of cortical bone in the femoral neck has been claimed to be human‐like in australopiths. In this study, we measured superior and inferior cortical thicknesses at the middle and base of the femoral neck using computed tomography in six Au. africanus and two P. robustus specimens. Cortical asymmetry in the fossils is closer overall to that of modern humans than to apes, although many values are intermediate between humans and apes, or even more ape‐like in the midneck. Comparisons of external femoral neck and head dimensions were carried out for a more comprehensive sample of South and East African australopiths (n = 17) and two early Homo specimens. These show that compared with modern humans, femoral neck superoinferior, but not anteroposterior breadth, is larger relative to femoral head breadth in australopiths, but not in early Homo. Both internal and external characteristics of the australopith femoral neck indicate adaptation to relatively increased superoinferior bending loads, compared with both modern humans and early Homo. These observations, and a relatively small femoral head, are consistent with a slightly altered gait pattern in australopiths, involving more lateral deviation of the body center of mass over the stance limb. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin‐enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin–enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin–enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample. Am. J. Primatol. 72:481–491, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Morphological variations of the deciduous dentition are as useful as those of the permanent dentition for determining the biological affinities of human populations. This paper provides material on morphological variations of deciduous teeth of the prehistoric Japanese population from the Late and the Latest Jomon Period (ca. 2000–ca. 300 B.C.). The expression of nonmetric traits of the deciduous teeth in the Jomon sample shows a closer affinity with modern Japanese and Native American samples than with American White, Asiatic Indian, and African samples. However, the frequency of shoveling in deciduous upper incisors in the Jomon sample is lower than those in modern Japanese and Native American samples. The Jomon sample also expresses a much higher frequency of cusp 6 in deciduous lower second molars than seen in modern Japanese, Ainu, and Native American samples. The frequency in the Jomon sample is equal to that in the Australian Aboriginal sample, which shows cusp 6 most frequently among the samples compared. A somewhat low incidence of incisor shoveling in the Jomon sample was also reported in the permanent dentition (Turner [1976] Science 193:911–913, [1979] Am. J. Phys. Anthropol. 51:619–635, [1987] Am. J. Phys. Anthropol. 73:305–321, [1990] Am. J. Phys. Anthropol. 82:295–317; T. Hanihara [1992] Am. J. Phys. Anthropol. 88:163–182, 88:183–196). However, the frequency of cusp 6 in the Jomon sample shows no significant difference from those of Northeast Asian or Native American samples in the permanent dentition (Turner [1987] Am. J. Phys. Anthropol. 73:305–321; T. Hanihara [1992] Am. J. Phys. Anthropol. 88:1–182, 88:183–196). Evidently, some nonmetric traits express an inter-group difference only in the deciduous dentition. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Recent humans and their fossil relatives are classified as having thick molar enamel, one of very few dental traits that distinguish hominins from living African apes. However, little is known about enamel thickness in the earliest members of the genus Homo, and recent studies of later Homo report considerable intra- and inter-specific variation. In order to assess taxonomic, geographic, and temporal trends in enamel thickness, we applied micro-computed tomographic imaging to 150 fossil Homo teeth spanning two million years. Early Homo postcanine teeth from Africa and Asia show highly variable average and relative enamel thickness (AET and RET) values. Three molars from South Africa exceed Homo AET and RET ranges, resembling the hyper thick Paranthropus condition. Most later Homo groups (archaic European and north African Homo, and fossil and recent Homo sapiens) possess absolutely and relatively thick enamel across the entire dentition. In contrast, Neanderthals show relatively thin enamel in their incisors, canines, premolars, and molars, although incisor AET values are similar to H. sapiens. Comparisons of recent and fossil H. sapiens reveal that dental size reduction has led to a disproportionate decrease in coronal dentine compared with enamel (although both are reduced), leading to relatively thicker enamel in recent humans. General characterizations of hominins as having ‘thick enamel’ thus oversimplify a surprisingly variable craniodental trait with limited taxonomic utility within a genus. Moreover, estimates of dental attrition rates employed in paleodemographic reconstruction may be biased when this variation is not considered. Additional research is necessary to reconstruct hominin dietary ecology since thick enamel is not a prerequisite for hard-object feeding, and it is present in most later Homo species despite advances in technology and food processing.  相似文献   

18.
Recent studies have suggested that Neandertals and modern humans differ in the distribution of perikymata (enamel growth increments) over their permanent anterior tooth crowns. In modern humans, perikymata become increasingly more compact toward the cervix than they do in Neandertals. Previous studies have suggested that a more homogeneous distribution of perikymata, like that of Neandertals, characterizes the anterior teeth of Homo heidelbergensis and Homo erectus as well. Here, we investigated whether Qafzeh anterior teeth (N = 14) differ from those of modern southern Africans, northern Europeans, and Alaskans (N = 47–74 depending on tooth type) in the percentage of perikymata present in their cervical halves. Using the normally distributed modern human values for each tooth type, we calculated Z‐scores for the 14 Qafzeh teeth. All but two of the 14 Qafzeh teeth had negative Z‐scores, meaning that values equal to these would be found in the bottom 50% of the modern human samples. Seven of the 14 would be found in the lowest 5% of the modern human distribution. Qafzeh teeth therefore appear to differ from those of modern humans in the same direction that Neandertals do: with generally lower percentages of perikymata in their cervical regions. The similarity between them appears to represent the retention of a perikymata distribution pattern present in earlier members of the genus Homo, but not generally characteristic of modern humans from diverse regions of the world. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
A method of drawing outlines of the distal end of the humerus is presented and carried out on some pongids (Pan troglodytes, Pan paniscus, Pongo pygmaeus), on modern man, and on some casts of Plio-Pleistocene hominids. It appears that these outlines are good indicators of the overall morphology and permit the distinguishing of the different hominoids. For example, the morphology of the pillars surrounding the fossa olecrani is useful for this purpose. In modern man, the lateral pillar is quadrangular, contrasting with the triangular medial one. In pongids, both of them are triangular; however, it is possible to note differences between Pongo and Pan. In the South Asian ape, there is a stronger anteroposterior flattening of the pillars as well as the diaphysis. The similarity of the shape of the pillars might be considered as a result of an adaptation to suspension. The differences might be due to different weights of the animals. Plio-Pleistocene hominids are variable with regard to the morphology of this region. For example, Gombore IB 7594 is similar to Homo. KNM ER 739 exhibits features intermediate between hominids and pongids. Finally, AL 288.1M is closer to pongids. These results confirm a previous anatomical work.  相似文献   

20.
High variability in the dentition of Homo can create uncertainties in the correct identification of isolated teeth. For instance, standard tooth identification criteria cannot determine with absolute certainty if an isolated tooth is a second or third maxillary molar. In this contribution, using occlusal fingerprint analysis, we reassess the identification of Krapina D58 (Homo neanderthalensis), which is catalogued as a third maxillary molar. We have hypothesized that the presence/absence of the distal occlusal wear facets can be used to differentiate second from third maxillary molars. The results obtained confirm our hypothesis, showing a significant difference between second and third maxillary molars. In particular we note the complete absence of Facets 7 and 10 in all third molars included in this analysis. The presence of these facets in Krapina D58 eliminates the possibility that it is a third maxillary molar. Consequently it should be reclassified as a second molar. Although this method is limited by the degree of dental wear (i.e., unworn teeth cannot be analyzed) and to individual molars in full occlusion, it can be used for tooth identification when other common criteria are not sufficient to discriminate between second and third maxillary molars. Am J Phys Anthropol 143:306–312, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号