首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
We report the development of a new method for frequency domain analysis of steady-state somatosensory evoked potentials (SEPs) to amplitude-modulated electrical stimulation, which can be recorded in significantly less time than traditional SEPs. Resampling techniques were used to compare the steady-state SEP to traditional SEP recordings, which are based on signal averaging in the time domain of cortical responses to repetitive transient stimulation and take 1–2 min or more to obtain a satisfactory signal/noise ratio. Median nerves of 3 subjects were stimulated continuously with electrical alternating current at several modulation frequencies from 7 to 41 Hz. Amplitude modulation was used to concentrate the power in higher frequencies, away from the modulation frequency, to reduce the amount of stimulus artifact recorded. Data were tested for signal detectability in the frequency domain using the Tcirc2 statistic. A reliable steady-state response can be recorded from scalp electrodes overlying somatosensory cortex in only a few seconds. In contrast, no signal was statistically discriminable from noise in the transient SEP from as much as 20 s of data. This dramatic time savings accompanying steady-state somatosensory stimulation may prove useful for monitoring in the operating room or intensive care unit.  相似文献   

2.
Surface myoelectric signals often appear to carry more information than what is resolved in root mean square analysis of the progress curves or in its power spectrum. Time-frequency analysis of myoelectric signals has not yet led to satisfactory results in respect of separating simultaneous events in time and frequency. In this study a time-frequency analysis of the intensities in time series was developed. This intensity analysis uses a filter bank of non-linearly scaled wavelets with specified time-resolution to extract time-frequency aspects of the signal. Special procedures were developed to calculate intensity in such a way as to approximate the power of the signal in time. Applied to an EMG signal the intensity analysis was called a functional EMG analysis. The method resolves events within the EMG signal. The time when the events occur and their intensity and frequency distribution are well resolved in the intensity patterns extracted from the EMG signal. Averaging intensity patterns from multiple experiments resolve repeatable functional aspects of muscle activation. Various properties of the functional EMG analysis were shown and discussed using model EMG data and real EMG data.  相似文献   

3.
Recordings of somatosensory evoked potentials (SEPs) and SEP brain maps of 23 patients with vertebral injury were analyzed. All patients were operated at the Clinic of Military Traumatology and Orthopedics, Military Medical Academy. SEPs (19 sites) were recorded in real time and mapped with "Brain surveyor" neuromapper. Brain lesions were localized before surgery by of MR imaging and CT standard techniques. The results demonstrate that electrical stimulation of peripheral nerves produces a substantially variable SEP pattern. It was shown that SEP formation in more than 60% of recordings suggests a favorable prognosis for rehabilitation, whereas if more than 50% of recording sites are unresponsive, the rehabilitation prognosis is unfavorable. The amplitude of early components (below 60 ms) increases, and that of the late waves reduces.  相似文献   

4.
Serial recording of median nerve somatosensory evoked potentials (SEPs) provides reliable intraoperative information on critical lowering of brain perfusion which compares favorably with other monitoring methods. However, single-channel parietal SEP recording may not detect hemodynamic cerebral infarctions affecting the pre-rolandic area. Following left carotid endarterectomy for high-grade symptomatic stenosis in a 66-year-old male, predominantly motor hemiparesis and aphasia were detected which were largely reversible. Pre- and intraoperative SEPs were normal. Postoperative SEPs showed significant interhemispheric amplitude differences. Postoperative CT examinations demonstrated hemodynamic watershed-type infarctions. This rare complication of carotid endarterectomy was not detected intraoperative single-channel parietal SEP monitoring.  相似文献   

5.
Abnormalities of somatosensory evoked potentials (SEPs) provide effective evidence for impairment of the somatosensory system, so that SEPs have been widely used in both clinical diagnosis and intraoperative neurophysiological monitoring. However, due to their low signal-to-noise ratio (SNR), SEPs are generally measured using ensemble averaging across hundreds of trials, thus unavoidably producing a tardiness of SEPs to the potential damages caused by surgical maneuvers and a loss of dynamical information of cortical processing related to somatosensory inputs. Here, we aimed to enhance the SNR of single-trial SEPs using Kalman filtering and time–frequency multiple linear regression (TF-MLR) and measure their single-trial parameters, both in the time domain and in the time–frequency domain. We first showed that, Kalman filtering and TF-MLR can effectively capture the single-trial SEP responses and provide accurate estimates of single-trial SEP parameters in the time domain and time–frequency domain, respectively. Furthermore, we identified significant correlations between the stimulus intensity and a set of indicative single-trial SEP parameters, including the correlation coefficient (between each single-trial SEPs and their average), P37 amplitude, N45 amplitude, P37-N45 amplitude, and phase value (at the zero-crossing points between P37 and N45). Finally, based on each indicative single-trial SEP parameter, we investigated the minimum number of trials required on a single-trial basis to suggest the existence of SEP responses, thus providing important information for fast SEP extraction in intraoperative monitoring.  相似文献   

6.
Median nerve SEPs were studied in 120 normal subjects. Highly significant correlations with height and age were found for all SEP peak latencies, but not for the interpeak latency N19–N13. A significant gender difference was found for N13 and N19 peak latencies, the males having longer latencies. No sex-related correlations in central conduction time could be shown. It is emphasized that reliable SEP interpretation should include simultaneous height, age and gender corrections.  相似文献   

7.
This study examined the relationships among 3 components of the somatosensory evoked potential (SEP) to painful stimuli. Painful stimuli were produced using intracutaneous electrical stimulation of a fingertip and two levels of non-painful stimuli were produced by superficial electrical stimulation of a neighboring fingertip. SEPs were recorded from Cz-A1 and Pz-A1, and difference waves were computed for 3 components: (1) a pain component (the difference between SEPs to painful vs. strong but non-painful stimuli); (2) an intensity component that is not related to pain (the difference between SEPs to strong non-painful vs. mild non-painful stimuli); and (3) a P300 component (the difference between SEPs to the same stimuli under Target instructions vs. Standard instructions).The positive peaks in the 3 types of difference waves differed in both latency and topography, although with latency and topography overlap. The intensity component had an earlier positive peak than the pain component, and the pain component had an earlier positive peak than the P300 component. The pain and intensity components were larger at Cz than Pz, whereas the P300 component was larger at Pz than Cz. Under certain conditions, the pain evoked SEP consists of a weighted combination of the 3 components, complicating interpretation of the positive peaks in the recorded wave forms.  相似文献   

8.
By using the decomposition technique developed by ourselves to investigate the scalp topography of evoked potentials, a computer model for the scalp topography of giant SEPs was computed from 5 patients with progressive myoclonic epilepsy and was compated with those obtained from 6 normal subjects. Components of giant SEPs were similar to those of normal SEPs with respect to various parameters, although the former were much larger than the latter. An experimental enlargement of some of the early cortical components of the normal SEP model gave rise to a wave from closely resembling that of the giant SEP. These findings support our previous conclusion, derived from study of the scalp topography of the original SEP wave form, that the giant SEP results from a pathological enhancement of certain early cortical components of the normal SEP. The underlying neuronal hyperexcitability seems to involve more than one subunit of the sensorimotor cortex.  相似文献   

9.

Background  

Somatosensory evoked potential (SEP) signal usually contains a set of detailed temporal components measured and identified in a time domain, giving meaningful information on physiological mechanisms of the nervous system. The purpose of this study is to measure and identify detailed time-frequency components in normal SEP using time-frequency analysis (TFA) methods and to obtain their distribution pattern in the time-frequency domain.  相似文献   

10.
The relative prognostic value of short-latency somatosensory evoked potentials (SEPs) and brain-stem auditory evoked potentials (BAEPs) was assessed in 35 patients with post-traumatic coma. Analysis of the evoked potentials was restricted to those recorded within the first 4 days following head injury. Abnormal SEPs were defined as an increase in central somatosensory conduction time or an absence of the initial cortical potential following stimulation of either median nerve. Abnormal BAEPs were classified as an increase in the wave I–V interval or the loss of any or all of its 3 most stable components (waves I, III and V) following stimulation of either ear. SEPs reliably both good and bad outcomes. All 17 patients in whom SEPs were graded as normal had a favourable outcome and 15 of 18 patients in whom SEPs were abnormal had an unfavourable outcome. Although abnormal BAEPs were associated with an unfavourable outcome in almost all patients (6 of 7), only 19 of 28 patients with normal BAEPs had a favourable outcome. The finding of normal BAEPs was therefore of little prognostic significance. These results confirm the superiority and greater sensitivity of the SEP in detecting abnormalities of brain function shortly after severe head trauma.  相似文献   

11.
Physiological high frequency activities (HFA) are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections), or different terminal layers (layer IV vs. layer II/III) affect its frequency, we, in the primary somatosensory cortex (SI), compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response) and N80 (late response) of somatosensory evoked potentials (HFASEP(N20) and HFASEP(N80)) and compared those overriding N1 and N2 (first and second responses) of cortico-cortical evoked potentials (HFACCEP(N1) and HFACCEP(N2)). HFASEP(N20) showed the power peak in the frequency above 200 Hz, while HFACCEP(N1) had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFACCEP(N1) and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.  相似文献   

12.
Somatosensory evoked potentials (SEPs) to various combinations of two independent brain compression modalities (localized epidural pressure and intracerebral pressure evoked by an inserted balloon) were investigated in 24 rats. The SEP pattern in response to gradually expanding volume wihtout additional epidural pressure remained unchanged for a certain period. SEP changes occurred only shortly prior to death. On the other hand, remarkable SEP changes were observed in a gradually expanding intracerebral mass, when combined with epidural pressure application at about 50% of the lethal volume. SEP changes in response to intermittent and continuous epidural pressure, in addition to a small intracerebral mass, were investigated too. Intermittent application of minor epidural pressure led to specific P1 changes, which recovered after each pressure step. The same pressure, administered continuously, evoked SEP changes with only partial recovery in some instances. Severe epidural pressure, administered intermittently, gave rise to severe SEP changes with only partial recovery after each step. The same epidural pressure delivered continuously led to SEP changes with very small recovery. SEPs have proved to be a reliable method for signalling brain dysfunction corresponding to various modalities and degrees of intracranial pressure.  相似文献   

13.
Somatosensory evoked potentials (SEPs) were monitored in 116 patients receiving halothane anesthesia during spinal fusion surgery. Whereas it has been generally assumed that the use of halogenated inhalational anesthetics should be avoided with SEP monitoring because of their purported deleterious effects on scalp-recorded sensory responses, we found that reproducible SEPs were obtained throughout the surgical procedure in 91% of the cases we monitored while using halothane at concentrations of 0.25–2.0%. In those cases in which halothane was delivered continuously at 0.5%, reproducible evoked responses were recorded in 96% (75 of 78) of the patients. Our data demonstrated 3 major effects of halothane on the SEP: (a) a small but significant decrease in the average amplitude of the first two components (N25 and P30), (b) a significant increase in the average latency of the late positive component (P53) of the wave form, and (c) occasional obliteration of components N25, N40, P53, and N71,but never of P30. These effects did not, in most cases, interfere with our ability to obtain clinically useful recordings. Our results suggest that in many instances the use of halothane anesthesia can be combined successfully with the recording of intraoperative SEPs.  相似文献   

14.
介绍了用于肌肉动态收缩期间非平稳表面肌电信号的时频分析方法。用短时傅里叶变换、Wigner-Ville分布及Choi-Williams分布计算了表面肌电信号的时频分布,用于信号频率内容随时间演化的可视化观察。通过计算瞬时频谱参数,对肌肉疲劳的电表现进行量化描述。分析了反复性的膝关节弯曲和伸展运动期间从股外侧肌所记录的表面肌电信号。发现和在静态收缩过程中观察到的平均频率线性下降不同,在动态收缩期间瞬时平均频率的变化过程是非线性的并且更为复杂,且与运动的生物力学条件有关。研究表明将时频分析技术应用于动态收缩期间的表面肌电信号可以增加用传统的频谱分析技术不能得到的信息。  相似文献   

15.
In 57 patients with clinical signs and surgical documentation of compressive myelopathy, ulnar nerve somatosensory evoked potentials (SEPs) were more sensitive (with 74% abnormal) than either median or tibial nerve SEPs. The most frequent abnormalities were reduced or absent neck evoked responses and prolonged central conduction time. All subjects who had an SEP abnormality were identified by combined tibial and ulnar SEPs. Median nerve SEP added no additional information. Normal ulnar and tibial nerve SEPs were also able to exclude major cord damage in patients with cervical radiculopathy but little evidence of myelopathy.  相似文献   

16.
Topographies and distributions of cortical SEPs to median nerve stimulation were studied in 8 normal adults and 5 neurological patients. SEPs recorded from C4, P4, Pz, T6-A1A2 derivations to left median nerve stimulation were composed of 2 early negative (N16, N20) and 2 positive components (P12, P23), whereas those recorded from frontal electrodes (Fz, Fp1, Fp2) disclosed 2 early negativities (N16, N24) and 2 early positivities (P12, P20). N20 and P20, and P23 and N24, reversed across the rolandic fissure with no significant difference in their peak latencies. P23 was of slightly shorter latency at C4 than at more posterior electrodes (P4, T6, Pz).In 3 patients with complete hemiplegia but normal sensation, all the early SEP components were normal in scalp distribution and peak latencies except for a decrease of N24 amplitude. In 2 patients with complete hemiplegia and sensory loss no early cortical SEPs were seen. These findings suggest that N20 and P20 are generated as a single horizontal dipole in the central fissure, whereas P23 and N24 are a reflection of multiple generators in pre- and postrolandic regions.  相似文献   

17.
Scalp distributions and topographies of early cortical somatosensory evoked potentials (SEPs) to median nerve stimulation were studied in 22 patients with 5 different types of cerebral lesion due to cerebrovascular disease or tumor (thalamic, postcentral subcortical, precentral subcortical, diffuse subcortical and parieto-occipital lesions) in order to investigate the origins of frontal (P20, N24) and central-parietal SEPs (N20, P22, P23).In 2 patients with thalamic syndrome, N16 was delayed in latency and N20/P20 were not recorded. No early SEP except for N16 was recorded in 2 patients with pure hemisensory loss due to postcentral subcortical lesion. In all 11 patients with pure hemiparesis or hemiplegia due to precentral subcortical lesion N20/P20 and P22, P23/N24 components were of normal peak latencies. The amplitude of N24 was significantly decreased in all 3 patients with complete hemiplegia. These findings support the hypothesis that N20/P20 are generated as a horizontal dipole in the central sulcus (3b), whereas P23/N24 are a reflection of multiple generators in pre- and post-rolandic fissures. P22 was very localized in the central area contralateral to the stimulation.Topographical studies of early cortical SEPs are useful for detecting each component in abnormal SEPs  相似文献   

18.
Time-frequency filtering of MEG signals with matching pursuit.   总被引:4,自引:0,他引:4  
Time-frequency signal analysis based on various decomposition techniques is widely used in biomedical applications. Matching Pursuit is a new adaptive approach for time-frequency decomposition of such biomedical signals. Its advantage is that it creates a concise signal approximation with the help of a small set of Gabor atoms chosen iteratively from a large and redundant set. In this paper, the usage of Matching Pursuit for time-frequency filtering of biomagnetic signals is proposed. The technique was validated on artificial signals and its performance was tested for varying signal-to-noise ratios using both simulated and real MEG somatic evoked magnetic field data.  相似文献   

19.
Monitoring of multichannel somatosensory evoked potentials (SEPs) has been performed in 40 cases of carotid endarterectomy (CEA). SEPs were obtained after median nerve stimulation at wrist, recording from 2nd cervical and from the scalp parietal (ipsi- and contralateral) and central (contralateral) positions. The reduction of CBF due to clamping of the carotid artery provoked SEP abnormalities in 10 of the 40 cases. None of the 30 patients with unmodified SEPs developed post-surgical neurological sequelae.SEP alterations were characterized exclusively by amplitude decrements and latency increases of the cortical components, the subcortical ones being unaffected. In 5 of these patients, SEPs returned to normal values before the end of the intervention and no neurological deficit was observed on awakening. In the remaining 5 cases SEPs retained their abnormalities and patients developed post-surgery neurological sequelae (4 immediately, 1 the day after).SEP alterations affected parietal and central components to a similar extent; however, in a few cases cerebral blood flow deficits provoked by carotid clamping modified differently the central P22 and the parietal N20–P25 waves.Comparisons with stump (back) pressure in the carotid artery revealed a higher sensitivity of the SEP technique in detecting vascularization problems due to carotid clamping.The time course of the appearance of SEP abnormalities seems to discriminate alterations secondary to collateral revascularization from those determined by embolization.  相似文献   

20.
The neural signal carried by the abducens nerve during eye fixations was simulated. The neural discharge was defined by the number of spikes carried by the abducens nerve within each ms. Calculations were based on real neurophysiological data. The computed neural signal showed frequency histograms and variance/mean ratios typical of Poisson distribution. A peak was obtained in the power spectral density function of the simulated neural signal. This peak appeared in the frequency range corresponding to the firing rate of single motoneurons for each eye position. It remained as a broad spectral peak after filtering by a second-order differential equation simulating the ocular mechanics. The obtained spectra are similar to the described power spectral density function of eye position recordings. Present results add evidence of a possible neural basis for ocular tremor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号