首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical calculations of reaction kinetics were done for one-step reactions catalyzed by cells immobilized in spherical beads. The reactions catalyzed by free cells were assumed to obey Michaelis-Menten kinetics for a one-substrate reaction. Both external (outside the beads) and internal (inside the beads) mass transfer of the substrate were considered for the immobilized preparations. The theoretical calculations were compared with experimental data for the oxidation of glycerol to dihydroxyacetone by Gluconobacter oxydans cells immobilized in calcium alginate gel. Glycerol was present in excess so that the reaction rate was limited by oxygen. The correlation between experimental data and theoretical calculations was quite good. The calculations showed how the overall effectiveness factor was influenced by, for example, the particle size and the cell density in the beads. In most cases the reaction rate was mainly limited by internal mass transfer of the substrate (oxygen). As shown previously, p-benzoquinone can replace oxygen as the electron acceptor in this reaction. The same equations for reaction kinetics and mass transfer were used with p-benzoquinone as the rate-limiting substrate. Parameters such as diffusivity, maximal reaction rate, and K were, of course, different. In this case also, the correlation between the model and the experimental results was quite good. Much higher production rates were obtained with p-benzoquinone as the electron acceptor compared to when oxygen was used. The reasons for this fact were that p-benzoquinone gave a higher maximal reaction rate for free cells and the solubility of p-benzoquinone was higher than for oxygen. Different methods of increasing the rate of microbial oxidation reactions are discussed.  相似文献   

2.
The industrial production of antibiotics with filamentous fungi is usually carried out in conventional aerated and agitated tank fermentors. Highly viscous non-Newtonian broths are produced and a compromise must be found between convenient shear stress and adequate oxygen transfer. In this work, cephalosporin C production by bioparticles of immobilized cells of Cephalosporium acremonium ATCC 48272 was studied in a repeated batch tower bioreactor as an alternative to the conventional process. Also, gas-liquid oxygen transfer volumetric coefficients, k(L)a, were determined at various air flow-rates and alumina contents in the bioparticle. The bioparticles were composed of calcium alginate (2.0% w/w), alumina ( < 44 micra), cells, and water. A model describing the cell growth, cephalosporin C production, oxygen, glucose, and sucrose consumption was proposed. To describe the radial variation of oxygen concentration within the pellet, the reaction-diffusion model forecasting a dead core bioparticle was adopted. The k(L)a measurements with gel beads prepared with 0.0, 1.0, 1.5, and 2.0% alumina showed that a higher k(L)a value is attained with 1.5 and 2.0%. An expression relating this coefficient to particle density, liquid density, and air velocity was obtained and further utilized in the simulation of the proposed model. Batch, followed by repeated batch experiments, were accomplished by draining the spent medium, washing with saline solution, and pouring fresh medium into the bioreactor. Results showed that glucose is consumed very quickly, within 24 h, followed by sucrose consumption and cephalosporin C production. Higher productivities were attained during the second batch, as cell concentration was already high, resulting in rapid glucose consumption and an early derepression of cephalosporin C synthesizing enzymes. The model incorporated this improvement predicting higher cephalosporin C productivity.  相似文献   

3.
In batch fermentation Leuconostoc mesenteroides immobilized in calcium alginate beads produced a total dextransucrase activity equal to about 93% of that by free, suspended bacterial cells under comparable conditions in a bubble column reactor. Continuous sucrose feeding (5 g/L h) to the immobilized-cell culture in the airlift bioreactor increased production of enzymatic activity by about 107% compared with ordinary batch operation of this reactor. About 14% of the enzymatic activity produced by the immobilized cells appears as soluble activity in the cell-free broth compared with about 40% in case of free cells. In an airlift bioreactor, both the soluble and the intact (sorbed and entrapped) enzymatic activity produced by the immobilized bacterial cells was about 34% greater under automatic pH control, compared to that produced in a bubble column reactor with only manual pH control. During formation of dextran by intact enzyme within cells and beads, declines are observed in apparent enzymatic activity.  相似文献   

4.
l-Serine production from methanol and glycine was attempted using immobilized resting cells of a methylotroph, Protomonas extorquens NR 1, under automatically controlled conditions. A Ca-alginate system was selected. The conditions for l-serine formation were optimized at 30°C. A concentration of glycine 100 g·l−1 which was the optimum concentration for l-serine production by free resting cells was used in the reaction mixture. The optimum concentrations of methanol and dissolved oxygen were 20 g·l−1 and 5 ppm, respectively. Under the optimum conditions, 11.3 g·l−1 of l-serine was produced within 36 h. The selectivities (mole of l-serine/mole of substrate consumed) of l-serine from methanol and glycine were 4.5% and 95.1%, respectively. The size of gel beads affected the l-serine formation rate. The initial rate of l-serine formation decreased with an increase in the size of beads. However, the l-serine formation rate increased at elevated concentrations of dissolved oxygen, even with large sized beads. This result implies that the oxygen diffusion inside the gel beads limited the l-serine formation rate. The observed effectiveness factor of the immobilized cells could be estimated by the theoretical effectiveness factor of the zero-order reaction with respect to the dissolved oxygen.Repeated use was not feasible without reactivation of the immobilized cells. Reusability was examined by reactivation of the immobilized resting cells in appropriate media for 12 h. The reactivated immobilized resting cells were used again in the next cycle. By this procedure, several cycles of l-serine formation were made possible.  相似文献   

5.
Rhizopus oryzae was immobilized on a cotton matrix in a static bed bioreactor. Compared with free cells in a stirred tank bioreactor, immobilized R. oryzae in this bioreactor gave higher lactic acid production but lower ethanol production. The highest lactic acid production rate (2.09 g/L h) with the final concentration of 37.83 g/L from 70 g/L glucose was achieved when operating the bioreactor at 700 rpm and 0.5 vvm air. To better understand the relationship between shear effects (agitation and aeration) and R. oryzae morphology and metabolism, oxygen transfer rate, fermentation kinetics, and lactate dehydrogenase activity were determined. In immobilized cell culture, higher oxygen transfer rate and lactic acid production were achieved but lower lactate dehydrogenase activity was found as compared with those in free cell culture operated at the same conditions. These results clearly imply that mass transport was the rate controlling step in lactic acid fermentation by R. oryzae.  相似文献   

6.
Conidia of Penicillium chrysogenum were immobilized in K-carrageenan beads and then incubated in a growth-supporting medium to yield a penicillin producing immobilized cell mass. These in situ grown immobilized cells were used for the semicontinuous (replacement cultures)and continuous (fluidized bioreactor culture) production of penicillin-G. When periodically replaced into a minimal production medium, immobilized cells exhibited a half-life for penicillin production which was ninefold greater than that exhibited by free cells. The half-life of penicillin production and the yield of penicillin from glucose in such a replacement culture were greatly affected by the frequency of replacement and by the production medium's pH and concentration of glucose, phosphate, and trace metal nutrients. A penicillin-producing continuous flow bioreactor (150 mL), employing immobilized cells, was operated for up to 16 days. The best specific penicillin productivity (1.2 mg/g cells/h)yield from glucose (7.0 mg/g glucose) and half-life of production (15 days) were obtained when the feed medium contained 10 g/L of glucose, the pH was maintained at 7.0, the relative dissolved oxygen concentration was ca. 40%; and the residence time was 20 h.  相似文献   

7.
Summary The oxygen uptake rates of Pseudomonas putida, Saccharomyces cerevisiae and Aspergillus niger, immobilized in Ca-alginate gel, were determined in comparison with the respiration of free cells. The specific oxygen uptake rate of immobilized microorganisms decreased with increasing cell content of the gel beads and increasing alginate concentration.Abbreviations ATCC American Type Culture Collection - DFA Deutsche Forschungsanstalt für Lebensmittelchemie - DSM Deutsche Stammsammlung von Mikroorganismen - DW dry weight - rpm rounds per minute  相似文献   

8.
Several fungal strains ofAspergillus andPenicillium were immobilized by cryopolymerization in polyvinyl alcohol cryogel beads.Aspergillus clavatus was the best producer of extracellular ribonuclease. Enzyme productivity and growth of free and immobilized cells in shake flasks and agitated bioreactor were studied. Ribonuclease production and growth behaviour depended on concentrations of glucose, peptone and soybean in the culture medium. Enzyme production was influenced by agitation and aeration intensity. In repeated batch, shake-flask cultures, the immobilized cells showed 2 to 3.5 times higher enzyme activity than free cells. The optimal conditions in a bioreactor were at 150 rev/min agitation speed and 0.5 vol/vol.min aeration. Enzyme productivity of immobilized cells (237 units/g dry mycelium.h) was 2.1 times higher than the productivity of free cells in a bioreactor, and 2.3 times higher than that of a shake-flask culture.R.J. Manolov is with the Institute of Microbiology, Department of Enzymes, Bulgarian Academy of Sciences, Georgy Bonchev Street 26, 1113 Sofia, Bulgaria.  相似文献   

9.
Summary Glucoamylase production by Aureobasidium pollulans A-124 was compared in free-living cells, cells immobilized in calcium alginate gel beads aerated on a rotary shaker (agitation rate 150 rpm), and immobilized cells aerated in an air bubble column reactor. Fermentation conditions in the bioreactor were established for bead concentration, substrate (starch) concentration, calcium chloride addition to the fermentation medium, and rate of aeration. Production of glucoamylase was optimized at approximately 1.5 units of enzyme activity/ml medium in the bioreactor under the following conditions: aeration rate, 2.0 vol air per working volume of the bioreactor (280 ml) per minute; gel bead concentration, 30% of the working volume; substrate (starch) concentration, at 0.3% (w/v); addition of calcium chloride to the medium at a final concentration of 0.01 M. Productivity levels were stabilized through the equivalent of ten batches of medium with the original inoculum of immobilized beads. Offprint requests to: M. Petruccioli  相似文献   

10.
Summary Diacetyl production by (Citr*)Lactococcus lactis subsp.lactis 3022 was found to be an oxygen-dependent reaction. The diacetyl production by the cells immobilized in conventional Ca-alginate gel beads (Diameter: 3 mm) was lower than that of the cells immobilized in Ca-alginate gel fibers (Diameter: 0.2 mm), probably because oxygen transfer to the immobilized cells is better in gel fibers than in gel beads.  相似文献   

11.
Pseudomonas putida MTCC 6809, a plant growth promoting rhizobacteria producing amidase was isolated from the rhizosphere of Pisum sativum. The cells were immobilized in sodium alginate for the production of amidase and the effect of dehydration on immobilized beads were studied. Optimization of process parameters for amidase production was carried out to enhance enzyme production using immobilized cells. From the results it is clear that 2% and 3% (w/v) of alginate were suitable for amidase production with 12.8 and 13 U/ml activity, respectively after 36 h of incubation. Among the various substrates studied acetamide (2% w/v) was a good inducer of amidase. It was observed that immobilized catalysts could be recycled up to five batches. Amidase production was observed in both free and immobilized cells, nevertheless immobilization is much favored in comparison to free cells, as it leads to reusability of beads, lesser contamination, consistent amidase production and adaptability to wide range of culture conditions. The relative enzyme activity with the dehydrated beads was only 27% in comparison to hydrated beads, it is possible to pack considerably more into a fixed volume as the relative volume of dehydrated beads is 20%. Even though consistent amidase production was difficult to achieve using dehydrated beads, which may have certain advantages like less chances for microbial contamination and easy to transport.  相似文献   

12.
A combination of extended Monod kinetics and the diffusional equation was used for evaluating the effectiveness factor of entrapped immobilized cells. Based on the kinetics of Zymomonas mobilis reported in the literature, the numerical results have revealed that the problem of mass transfer diffusional restrictions can be neglected by using small beads (1 mm in diameter) with a corresponding cell loading up to 276 g/L gel. On the basis of the numerical results obtained, the application of immobilized cells for continuous ethanol production was investigated. The kappa-carrageenan method was utilized to entrap Z. mobilis CP4, a potential ethanol producer. A two stage fermentation process has also been developed for ethanol production by the Z. mobilis carrageenan-bound cells. About 90 g/L ethanol was produced by immobilized cells at a total residence time of 1.56 h. The ethanol yield was estimated to be 93% of theoretical. The results obtained in this study also indicated that the control of optimum pH in an immobilized cell column is necessary to enhance the rate of ethanol production.  相似文献   

13.
Summary The performance of an external loop air-lift bioreactor was investigated by assessing the inter-relationships between various hydrodynamic properties and mass transfer. The feasibility of using this bioreactor for the production of monoclonal antibodies by mouse hybridoma cells immobilized in calcium alginate gel beads and alginate/poly-l-lysine microcapsules was also examined. When the superficial gas velocity, V g , in the 300 ml reactor was varied from 2 to 36 cm/min, the average liquid velocity increased from 3 to 14 cm/sec, the gas hold-up rose from 0.2 to 3.0%, and the oxygen mass transfer coefficient, k L a, increased from 2.5 to 18.1 h-1. A minimum liquid velocity of 4 cm/s was required to maintain alginate gel beads (1000 m diameter, occupying 3% of reactor volume) in suspension. Batch culture of hybridoma cells immobilized in alginate beads followed logarithmic growth, reaching a concentration of 4×107 cells/ml beads after 11 days. Significant antibody production did not occur until day 9 into the culture, reaching a value of 100 g/ml of medium at day 11. On the other hand, bioreactor studies with encapsulated hybridoma cells gave monoclonal antibody concentrations of up to 800 g/ml capsules (the antibody being retained within the semipermeable capsule) and maximum cell densities of 2×108 cells/ml capsule at day 11. The volumetric productivities of the alginate gel immobilized cell system and the encapsulated cell system were 9 and 3 g antibody per ml of reactor volume per day, respectively. The main advantage of the bioreactor system is its simple design, since no mechanical input is required to vary the hydrodynamic properties.  相似文献   

14.
AIMS: The purpose of the present investigation was to develop a novel method for cell immobilization. METHODS AND RESULTS: Aureobasidium pullulans cells were mixed with an alginate solution, and the mixture was extruded to form small gel beads as hydrated-immobilized cells. The beads were then placed at -15 degrees C for 6-24 h to induce freeze-dehydration. The freeze-dehydration resulted in shrinkage of beads as a result of water removal reducing bead volume by 82% and bead weight by 85%. The dehydrated beads were successfully used for the production of fructo-oligosaccharides in a model reactor system. CONCLUSIONS: Dehydrated beads may provide some commercial advantages over conventional immobilized cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that bioreactor performance can be improved up to two times by the use of the dehydrated beads.  相似文献   

15.
Cells of Leuconostoc mesenteroides immobilized in calcium alginate beads were used to produce dextransucrase (DS) in three sequential cycles of semicontinuous fed-batch fermentations. Each cycle consisted of a fed-batch DS production period of 24 h followed by a batch dextran production period for another 24 h. Free, suspended cells were used in only one cycle of fed-batch DS production followed by a dextran production period. It was impractically tedious to separate and reuse free cells. Increasing sucrose feed rate from 5 to 10 g/L h led to increases of the total enzymatic activity by about 88% with immobilized cells and by about 100% with free cells. In DS fed-batch semicontinuous fermentation, total enzymatic activity produced by immobilized cells was 1.35 and 1.56 times greater than that produced by free cells with respective sucrose feeding rates of 10 and 5 g/L h. These increases in enzyme productivity with immobilized cells, however, required total overall operating times three times longer (three cycles) than with free cells (one cycle). Growing the microorganism at optimum conditions for DS production also increased the dextran yield and shortened the time of conversion of sucrose to dextran, regardless of whether the cells were free or immobilized. Moreover, during three cycles of semicontinuous operation (144 h) immobilized cells produced more than three times as much dextran as free cells during one cycle (24 h).  相似文献   

16.
Continuous xylitol production with two different immobilized recombinant Saccharomyces cerevisiae strains (H475 and S641), expressing low and high xylose reductase (XR) activities, was investigated in a lab-scale packed-bed bioreactor. The effect of hydraulic residence time (HRT; 1.3-11.3 h), substrate/cosubstrate ratio (0.5 and 1), recycling ratio (0, 5, and 10), and aeration (anaerobic and oxygen limited conditions) were studied. The cells were immobilized by gel entrapment using Ca-alginate as support and the beads were treated with Al(3+) to improve their mechanical strength. Xylose was converted to xylitol using glucose as cosubstrate for regeneration of NAD(P)H required in xylitol formation and for generation of maintenance energy. The stability of the recombinant strains after 15 days of continuous operation was evaluated by XR activity and plasmid retention analyses. Under anaerobic conditions the volumetric xylitol productivity increased with decreasing HRT with both strains. With a recycling ratio of 10, volumetric productivities as high as 3.44 and 5.80 g/L . h were obtained with the low XR strain at HRT 1.3 h and with the high XR strain at HRT 2.6 h, respectively. However, the highest overall xylitol yields on xylose and on cosubstrate were reached at higher HRTs. Lowering the xylose/cosubstrate ratio from 1 to 0.5 increased the overall yield of xylitol on xylose, but the productivity and the xylitol yield on cosubstrate decreased. Under oxygen limited conditions the effect of the recycling ratio on production parameters was masked by other factors, such as an accumulation of free cells in the bioreactor and severe genetic instability of the high XR strain. Under anaerobic conditions the instability was less severe, causing a decrease in XR activity from 0.15 to 0.10 and from 3.18 to 1.49 U/mg with the low and high XR strains, respectively. At the end of the fermentation, the fraction of plasmid bearing cells in the beads was close to 100% for the low XR strain; however, it was significantly lower for the high XR strain, particularly for cells from the interior of the beads. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
Rhamnolipids are high‐value effective biosurfactants produced by Pseudomonas aeruginosa. Large‐scale production of rhamnolipids is still challenging especially under free‐cell aerobic conditions in which the highly foaming nature of the culture broth reduces the productivity of the process. Immobilized systems relying on oxygen as electron acceptor have been previously investigated but oxygen transfer limitation presents difficulties for continuous rhamnolipid production. A coupled system using immobilized cells and nitrate instead of oxygen as electron acceptor taking advantage of the ability of P. aeruginosa to perform nitrate respiration was evaluated. This denitrification‐based immobilized approach based on a hollow‐fiber setup eliminated the transfer limitation problems and was found suitable for continuous rhamnolipid production in a period longer than 1,500 h. It completely eliminated the foaming difficulties related to aerobic systems with a comparable specific productivity of 0.017 g/(g dry cells)‐h and allowed easy recovery of rhamnolipids from the cell‐free medium. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 346–351, 2013  相似文献   

18.
Summary The performance of immobilized growing cells of Gibberella fujikuroi P-3 was affected by the immobilization agent used, nature and age of cells, mycelial cell density, size of beads and inclusion of linseed oil. The beads, prepared by using standardized procedures, could be used for 8 cycles without affecting productivity in semicontinuous culture. The rate of production of gibberellic acid was 0.58–0.66 mg/l/h. An inverted conical fluidized bioreactor, based on the design employed in continuous plant cell culture, was adopted. This bioreactor offers many advantages. The pigment produced by the fungus is not similar to bikaverin, norbikaverin and O-dimethylanhydrofusarubin, the known polyketides.  相似文献   

19.
Paclitaxel and baccatin III-producing cells of Taxus baccata were immobilized within Ca(2+)-alginate beads. Under established optimum conditions for the biosynthesis of both taxanes, the yields of paclitaxel and baccatin III in shake-flask cultures of free cells increased by factors of up to 3 and 2, respectively, in the corresponding cultures of immobilized cells. Although the scale-up from shake-flask to bioreactor culture usually results in reduced productivities when both free and immobilized cells were grown in the same optimum conditions in three different bioreactor types (Stirred, Airlift, and Wave) running for 24 days in a batch mode and with the system optimized in each case, there was a considerable increase in the yields of paclitaxel and baccatin III. Among the reactors, the Stirred bioreactor was the most efficient in promoting immobilized cell production of paclitaxel, giving a content of 43.43 mg.L(-1) at 16 days of culture, equivalent to a rate of 2.71 mg.L(-1).day(-1). To our knowledge, the paclitaxel productivity obtained in this study is one of the highest reported so far by academic laboratories for Taxus species cultures in bioreactors.  相似文献   

20.
Aspergillus niger cells immobilized in agarose beads were utilized for the productin of citric acid from soy whey, a by-product generated during the tofu-making process. Soy when samples supplemented with 10% sucrose were inoculated with 10% (w/v) free and immobilized cells and incubated at 30°C in a shaker water bath at a speed of 200–220 rpm. Maximal citric acid yields of 21 g/l and 27 g/l with free and immobilized cells, respectively, were recorded on the 10th day under repeated batch conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号