首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
D Glyceraldehyde 3 phosphatedehydrogenase(GAPDH ,EC 1.2 .1.12 )isakeyenzymeoftheglycolyticpathwaythatispresentinthecytosolofallorganismssofarstudied[1] .TheglycolyticGAPDHhasbeenremarkablyconservedduringevolution ,havingahomotetramericstructurewithsubunitsof 35 - 37kD[1] .GAPDHhasbeenisolatedfromavarietyofspecies[2 ] ,includingmesophilic ,moderatelythermophilicandhyperthermophilicmicroorganisms[3 ] .Theseenzymes ,whichdifferinthermalstability ,havebeenshowntobehighlysimilarinaminoacidse…  相似文献   

2.
1. The structural properties of skeletal muscle phosphofructokinase from euthermic and hibernating jerboa were compared. 2. The enzyme was purified by a rapid procedure; suspended in ammonium sulfate in the presence of ATP, it was found to be stable for three weeks. 3. A specific activity of 76 U/mg and at most 65 U/mg was obtained for the enzyme from the euthermic and hibernating jerboa, respectively. 4. The molecular weight was estimated to be 320 kDa for the oligomer and 80 kDa for the subunit. 5. A unique alanine residue was found at the C-terminal end, suggesting that the enzyme is a tetramer made of four identical subunits. 6. The tetrameric structure of phosphofructokinase was confirmed by using crosslinking with disuccinimidyl esters. 7. The kinetics of formation of the different crosslinked species were found to be in agreement with a model of the tetramer corresponding to a dihedral symmetry with isologuous contacts between protomers. 8. The same molecular characteristics and immunochemical properties were found for the enzyme extracted from the euthermic and hibernating animals.  相似文献   

3.
Summary The mechanisms of glycolytic rate control during hibernation in the ground squirrel Spermophilus lateralis were investigated in four tissues: heart, liver, kidney, and leg muscle. Overall glycogen phosphorylase activity decreased significantly in liver and kidney to give 50% or 75% of the activity found in the corresponding euthermic organs, respectively. The concentration of fructose-2,6-bisphosphate (F-2,6-P2) decreased significantly in heart and leg muscle during hibernation to 50% and 80% of euthermic tissue concentrations, respectively, but remained constant in liver and kidney. The overall activity of pyruvate dehydrogenase (PDH) in heart and kidney from hibernators was only 4% of the corresponding euthermic values. Measurements of phosphofructokinase (PFK) and pyruvate kinase (PK) kinetic parameters in euthermic and hibernating animals showed that heart and skeletal muscle had typical rabbit skeletal M-type PFK and M1-type PK. Liver and kidney PFK were similar to the L-type enzyme from rabbit liver, whereas liver and kidney PK were similar to the M2 isozyme found primarily in rabbit kidney. The kinetic parameters of PFK and PK from euthermic vs hibernating animals were not statistically different. These data indicate that tissue-specific phosphorylation of glycogen phosphorylase and PDH, as well as changes in the concentration of F-2,6-P2 may be part of a general mechanism to coordinate glycolytic rate reduction in hibernating S. lateralis.Abbreviations ADP adenosine diphosphate - AMP adenosine monophosphate - ATP adenonine triphoshate - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F-6-P fructose 6-phosphate - F-1,6-P2 fructose 1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - K a activation coefficient - I50 concentration of inhibitor which reduces control activity by 50% - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PFK 6-phosphofructo-1-kinase - PK pyruvate kinase  相似文献   

4.
1. Plasma glucose, glycerol, free fatty acids and total lipid content of the white adipose tissue were measured in euthermic and hibernating jerboa. 2. During hibernation, plasma glucose and glycerol were low compared to the euthermic animals, whereas there was no obvious difference in plasma free fatty acids. The white adipose tissue lipid content was strongly reduced in the hibernating state. 3. The effect of lipolytic hormones (norepinephrine and glucagon) and antilipolytic hormone (insulin) on in vitro glycerol release by adipose tissue isolated from hibernating or euthermic jerboa has been studied. 4. The white adipose tissue from hibernating jerboa presented a higher sensitivity to norepinephrine and glucagon than that of euthermic jerboa; insulin did not modify either basal glycerol release or lipolysis induced by the two lipolytic hormones at low temperatures (7 degrees C) and during the rewarming (from 7 degrees C to 37 degrees C) of the tissue slices. 5. These results suggested that white adipose tissue constitutes an important source of substrates derived from lipolysis during hibernation.  相似文献   

5.
Akt (or protein kinase B) plays a central role in coordinating growth, survival and anti-apoptotic responses in cells and we hypothesized that changes in Akt activity and properties would aid the reprioritization of metabolic functions that occurs during mammalian hibernation. Akt was analyzed in skeletal muscle and liver of Richardson's ground squirrels, Spermophilus richardsonii, comparing the enzyme from euthermic and hibernating states. Akt activity, measured with a synthetic peptide substrate, decreased by 60–65% in both organs during hibernation. Western blotting showed that total Akt protein did not change in hibernation but active, phosphorylated Akt (Ser 473) was reduced by 40% in muscle compared with euthermic controls and was almost undetectable in liver. Kinetic analysis of muscle Akt showed that S0.5 values for Akt peptide were 28% lower during hibernation, compared with the euthermic enzyme, whereas S0.5 ATP increased by 330%. Assay at 10 °C also elevated S0.5 ATP of euthermic Akt by 350%. Changes in ATP affinity would limit Akt function in the hibernator since the muscle adenylate pool size is also strongly suppressed during cold torpor. Other parameters of euthermic and hibernator Akt were the same including activation energy calculated from Arrhenius plots and sensitivity to urea denaturation. DEAE Sephadex chromatography of muscle extracts revealed three peaks of Akt activity in euthermia but only two during hibernation suggesting isozymes are differentially dephosphorylated during torpor. Altered enzyme properties and suppression of Akt activity would contribute to the coordinated suppression of energy-expensive anabolic and growth processes that is needed to maintain viability during over weeks of winter torpor.  相似文献   

6.
Cytosolic calcium-dependent phospholipase A2 (cPLA2) has multiple roles including production of arachidonic acid (a key player in cellular signaling pathways) and membrane remodeling. Additionally, since catabolism of arachidonic acid generates free radicals, the enzyme is also implicated in ischemic injury to mammalian organs. Regulation of cPLA2 could be important in the suppression and prioritization of cellular pathways in animals that undergo reversible transitions into hypometabolic states. The present study examines the responses and regulation of cPLA2 in skeletal muscle and liver of hibernating thirteen-lined ground squirrels, Spermophilus tridecemlineatus. cPLA2 activity decreased significantly by 43% in liver during hibernation, compared with euthermic controls, and Km values for arachidonoyl thio-PC substrate fell in both organs during hibernation to 61% in liver and 28% in muscle of the corresponding euthermic value. To determine whether these responses were due to a change in the phosphorylation state of the enzyme, Western blotting was employed using antibodies recognizing phospho-Ser505 on α-cPLA2. The amount of phosphorylated α-cPLA2 in hibernator liver was just 38% of the value in euthermic liver. Furthermore, incubation of liver extracts under conditions that enhanced protein phosphatase action caused a greater reduction in the detectable amount of phospho-Ser505 enzyme content in euthermic, versus hibernator, extracts. The data are consistent with a suppression of cPLA2 function during torpor via enzyme dephosphorylation, an action that may contribute to the well-developed ischemia tolerance and lack of oxidative damage found in hibernating species over cycles of torpor and arousal.  相似文献   

7.
Tissue distribution of the cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase (cGPDH and mGPDH) activities in jerboa (Jaculus orientalis), a hibernator, shows the highest level of enzyme activity in skeletal muscle and brown adipose tissue, respectively. The effect of hibernation on cGPDH indicates an increase of activity in all tissues examined. In contrast, hibernation decreases mGPDH activity in all tissues, except skeletal muscle. The effect of thyroid hormones on GPDH activity was tissue specific: in kidneys, cGPDH activity doubled in euthermic jerboas treated with T4. In contrast, 6-n-propyl-2-thiouracil treatment provokes an increase of enzyme activity in brown adipose tissue, liver and brain. T4 treatment leads to a 2.7-fold increase in liver mGPDH activity. 6-n-propyl-2-thiouracil treatment decreases mGPDH activity in the skeletal muscle whereas the opposite effect was observed in brain. Dexamethasone stimulates cGPDH in all tissues examined, except skeletal muscle and kidneys. In the case of mGPDH activity, this increase was observed only for brown adipose tissue and brain. Our results suggest that hibernation, thyroid hormones and dexamethasone probably play a role in the regulation of cGPDH and mGPDH activities in jerboa. Our findings confirm that these enzymes are involved in metabolic adaptation to thermal stress in Jaculus orientalis.  相似文献   

8.
The citric acid cycle (CAC) is a central metabolic pathway that links carbohydrate, lipid, and amino acid metabolism in the mitochondria and, hence, is a crucial target for metabolic regulation. The α-ketoglutarate dehydrogenase complex (KGDC) is the rate-limiting step of the CAC, the three enzymes of the complex catalyzing the transformation of α-ketoglutarate to succinyl-CoA with the release of CO2 and reduction of NAD to NADH. During hibernation, the metabolic rate of small mammals is suppressed, in part due to reduced body temperature but also active controls that suppress aerobic metabolism. The present study examined KGDC regulation during hibernation in skeletal muscle of the Richardson's ground squirrel (Urocitellus richardsonii). The KGDC was partially purified from skeletal muscle of euthermic and hibernating ground squirrels and kinetic properties were evaluated at 5°, 22°, and 37 °C. KGDC from hibernator muscle at all temperatures compared with euthermic controls exhibited a decreased affinity for CoA as well as reduced activation by Ca2+ ions at 5 °C from both euthermic and hibernating conditions. Co-immunoprecipitation was employed to isolate the E1, E2 and E3 enzymes of the complex (OGDH, DLST, DLD) to allow immunoblot analysis of post-translational modifications (PTMs) of each enzyme. The results showed elevated phospho-tyrosine content on all three enzymes during hibernation as well as increased ADP-ribosylation and succinylation of hibernator OGDH. Taken together these results show that the KGDC is regulated by posttranslational modifications and temperature effects to reorganize enzyme activity and mitochondrial function to aid suppression of mitochondrial activity during hibernation.  相似文献   

9.
The D-3-hydroxybutyrate dehydrogenase (BDH) (EC 1.1.1.30) from liver jerboa (Jaculus orientalis), a ketone body converting enzyme in mitochondria, in two populations of mitochondria (heavy and light) has been studied in different jerboa states (euthermic, prehibernating and hibernating). The results reveal: (1) important variations between states in terms of ketones bodies, glucose and lipid levels; (2) significant differences between the BDH of the two mitochondrial populations in term of protein expression and kinetic properties. These results suggest that BDH leads an important conformational change depending on the physiological state of jerboa. This BDH structural change could be the consequence of the lipid composition modifications in inner mitochondrial membrane leading to changes in BDH catalytic properties.  相似文献   

10.
H.F. Bundy  S. Coté 《Phytochemistry》1980,19(12):2531-2534
Carbonic anhydrase (CA) was purified from the unicellular green alga Chlamydomonas reinhardii, and the purity of the preparation was established by gradient gel electrophoresis. The purified enzyme exhibited a MW of 165 000 and contained 6 atoms of Zn. The subunit MW, as determined by dodecyl sulfate electrophoresis, was 27 000. These results are consistent with a quarternary structure which is hexameric, each monomer containing 1 g atom of Zn. Like spinach CA, and in contrast to other oligomeric plant CAs, a sulfhydryl reducing agent is not needed to stabilize the enzyme. CO2-hydrase activity was inhibited by both acetazolamide (I50 = 7.8 × 10?9M) and sulfanilamide (I50 = 1.3 × 10?5M), as well as by certain inorganic anions. The purified enzyme showed relatively weak esterase activity with p-nitrophenyl acetate but was an extremely effective esterase with 2-hydroxy-5-nitro-α-toluenesulfonic acid sultone as the substrate. Both esterase activities could be completely inhibited by adding acetazolamide. In its gross structural characteristics, the C. reinhardii enzyme resembles the CAs from higher plants. However, in its esterase activity and the inhibition by sulfonamides it is markedly different from plant CAs and bears more resemblance to erythrocyte CAs.  相似文献   

11.
Metabolic signaling coordinates the transition by hibernating mammals from euthermia into profound torpor. Organ-specific responses by activated p38 mitogen activated protein kinase (MAPK) are known to contribute to this transition. Therefore, we hypothesized that the MAPK-activated protein kinase-2 (MAPKAPK2), a downstream target of p38 MAPK, would also be active in establishing the torpid state. Kinetic parameters of MAPKAPK2 from skeletal muscle of Richardson’s ground squirrels, Spermophilus richardsonii, were analyzed using a fluorescence assay. MAPKAPK2 activity was 27.4 ± 1.27 pmol/min/mg in muscle from euthermic squirrels and decreased by ∼63% during cold torpor, while total protein levels were unchanged (as assessed by immunoblotting). In vitro treatment of MAPKAPK2 via stimulation of endogenous phosphatases and addition of commercial alkaline phosphatase decreased enzyme activity to only ∼3–5% of its original value in muscle extracts from both euthermic and hibernating squirrels suggesting that posttranslational modification suppresses MAPKAPK2 during the transition from euthermic to torpid states. Enzyme S0.5 and nH values for ATP and peptide substrates changed significantly between euthermia and torpor, and also between assays at 22 versus 10 °C but, kinetic parameters were actually closely conserved when values for the euthermic enzyme at 22 °C were directly compared with the hibernator enzyme at 10 °C. Arrhenius plots showed significantly different activation energies of 40.8 ± 0.7 and 54.3 ± 2.7 kJ/mol for the muscle enzyme from euthermic versus torpid animals, respectively but MAPKAPK2 from the two physiological states showed no difference in sensitivity to urea denaturation. Overall, the results show that total activity of MAPKAPK2 is in fact reduced, despite previous findings of p38 MAPK activation, and kinetic parameters are altered when ground squirrels enter torpor but protein stability is not apparently changed. The data suggest that MAPKAPK2 suppression may have a significant role in the differential regulation of muscle target proteins when ground squirrels enter torpor.  相似文献   

12.
This work reports the purification, biological characterization and amino acid sequence of two new basic PLA2 isoforms, Cdc-9 and Cdc-10, purified from the Crotalus durissus cumanensis venom by one step analytical chromatography reverse phase HPLC. The molecular masses of the PLA2 were 14,175 ± 2.7 Da for Cdc-9 and 14,228 ± 3.5 Da for Cdc-10 both deduced by primary structure and confirmed by MALDI-TOF. The isoforms presented an amino acid sequence of 122 amino acid residues, being Cdc-9: SLVQFNKMIK FETRKSGLPF YAAYGCYCGW GGQRPKDATD RCCFVHDCCY GKVAKCNTKW DIYSYSLKSG YITCGKGTWC KEQICECDRV AAECLRRSLS TYKNEYMFYP DSRCREPPEY TC with pI value of 8.25 and Cdc-10: SLLQFNKMIK FETRKSGVPF YAAYGCYCGW GGRRPKDPTD RCCFVHDCCY GKLTKCNTKW DIYSYSLKSG YITCGKGTWC KEQICECDRV AAECLRRSLN TYKNEYMFYP DSRCRGPPEY TC with a pI value of 8.46, showing highly conserved Ca2+-binding and catalytic sites. The PLA2 activity decreased when the isoforms Cdc-9 and Cdc-10 were incubated with 4-bromophenacyl bromide (p-BPB), anhydrous acetic acid and p-nitrobenzene sulfonyl fluoride (NBSF) when compared with the activity of both native isoforms. In mice, the PLA2 isoforms Cdc-9 and Cdc-10 induced myonecrosis and edema. Myotoxic and edema activities were reduced after treatment of the isoforms with p-BPB; acetylation of the lysine residues and the treatment of PLA2 with NBSF have also induced edema reduction. However, p-BPB strongly diminishes the local and systemic myotoxic effects.  相似文献   

13.
《Cryobiology》2013,66(3):235-241
Metabolic signaling coordinates the transition by hibernating mammals from euthermia into profound torpor. Organ-specific responses by activated p38 mitogen activated protein kinase (MAPK) are known to contribute to this transition. Therefore, we hypothesized that the MAPK-activated protein kinase-2 (MAPKAPK2), a downstream target of p38 MAPK, would also be active in establishing the torpid state. Kinetic parameters of MAPKAPK2 from skeletal muscle of Richardson’s ground squirrels, Spermophilus richardsonii, were analyzed using a fluorescence assay. MAPKAPK2 activity was 27.4 ± 1.27 pmol/min/mg in muscle from euthermic squirrels and decreased by ∼63% during cold torpor, while total protein levels were unchanged (as assessed by immunoblotting). In vitro treatment of MAPKAPK2 via stimulation of endogenous phosphatases and addition of commercial alkaline phosphatase decreased enzyme activity to only ∼3–5% of its original value in muscle extracts from both euthermic and hibernating squirrels suggesting that posttranslational modification suppresses MAPKAPK2 during the transition from euthermic to torpid states. Enzyme S0.5 and nH values for ATP and peptide substrates changed significantly between euthermia and torpor, and also between assays at 22 versus 10 °C but, kinetic parameters were actually closely conserved when values for the euthermic enzyme at 22 °C were directly compared with the hibernator enzyme at 10 °C. Arrhenius plots showed significantly different activation energies of 40.8 ± 0.7 and 54.3 ± 2.7 kJ/mol for the muscle enzyme from euthermic versus torpid animals, respectively but MAPKAPK2 from the two physiological states showed no difference in sensitivity to urea denaturation. Overall, the results show that total activity of MAPKAPK2 is in fact reduced, despite previous findings of p38 MAPK activation, and kinetic parameters are altered when ground squirrels enter torpor but protein stability is not apparently changed. The data suggest that MAPKAPK2 suppression may have a significant role in the differential regulation of muscle target proteins when ground squirrels enter torpor.  相似文献   

14.
The kinetic properties of glucokinase (GLK) from the liver of active and hibernating ground squirrels Spermophilus undulatus have been studied. Entrance of ground squirrels into hibernation from their active state is accompanied by a sharp decrease in blood glucose (Glc) level (from 14 to 2.9 mM) and with a significant (7-fold) decrease of GLK activity in the liver cytoplasm. Preparations of native GLK practically devoid of other molecular forms of hexokinase were obtained from the liver of active and hibernating ground squirrels. The dependence of GLK activity upon Glc concentration for the enzyme from active ground squirrel liver showed a pronounced sigmoid character (Hill coefficient, h = 1.70 and S 0.5 = 6.23 mM; the experiments were conducted at 25°C in the presence of enzyme stabilizers, K+ and DTT). The same dependence of enzyme activity on Glc concentration was found for GLK from rat liver. However, on decreasing the temperature to 2°C (simulation of hibernation conditions), this dependency became almost hyperbolic (h = 1.16) and GLK affinity for substrate was reduced (S 0.5 = 23 mM). These parameters for hibernating ground squirrels (body temperature 5°C) at 25°C were found to be practically equal to the corresponding values obtained for GLK from the liver of active animals (h = 1.60, S 0.5 = 9.0 mM, respectively); at 2°C sigmoid character was less expressed and affinity for Glc was drastically decreased (h = 1.20, S 0.5 = 45 mM). The calculations of GLK activity in the liver of hibernating ground squirrels based on enzyme kinetic characteristics and seasonal changes in blood Glc concentrations have shown that GLK activity in the liver of hibernating ground squirrels is decreased about 5500-fold.  相似文献   

15.
16.
A milk coagulating protease was purified ∼10.2-fold to apparent homogeneity from ginger rhizomes in 34.9% recovery using ammonium sulfate fractionation, together with ion exchange and size exclusion chromatographic techniques. The molecular mass of the purified protease was estimated to be ∼36 kDa by SDS-PAGE, and exhibited a pI of 4.3. It is a glycoprotein with 3% carbohydrate content. The purified enzyme showed maximum activity at pH 5.5 and at a temperature of ∼60 °C. Its protease activity was strongly inhibited by iodoacetamide, E-64, PCMB, Hg2+ and Cu2+. Inhibition studies and N-terminal sequence classified the enzyme as a member of the cysteine proteases. The cleavage capability of the isolated enzyme was higher for αs-casein followed by β- and κ-casein. The purified enzyme differed in molecular mass, pI, carbohydrate content, and N-terminal sequence from previously reported ginger proteases. These results indicate that the purified protease may have potential application as a rennet substitute in the dairy industry.  相似文献   

17.
Multicatalytic proteinase complex (MCP) was studied in skeletal muscle of the hibernating ground squirrel, Spermophilus tridecemlineatus. MCP was partially purified using a S-400 gel filtration column and Centricon concentrating devices and assayed fluorometrically using three AMC-labeled substrates. Km and Vmax values were determined for each substrate with no significant differences between the enzyme from euthermic versus hibernating animals when assayed at 23 C. However, properties of MCP from euthermic and hibernating ground squirrels were differentially affected by low assay temperature (8–10 C) and also differed from the mouse enzyme, the data indicating that ground squirrel MCP is better suited for low temperature function. MCP preferentially degrades oxidatively-damaged proteins and quantification of protein carbonyl content showed that the level of oxidatively-damaged protein in skeletal muscle decreased by > 75% during hibernation suggesting a continuing role for the MCP in the torpid state. (Mol Cell Biochem 271: 205–213, 2005)  相似文献   

18.
Rat liver mitochondrial carnitine palmitoyl transferase (CPT) was found to reside in two mitochondrial locations. Twenty to twenty-five percent of the total CPT activity was easily released and solubilized by digitonin. This activity appeared to be the outer form of CPT (CPTO). The remainder of the activity or the inner CPT (CPTI) was tightly membrane bound. Trypsin digestion of the digitonin prepared mitoplast did not affect residual CPT activity indicating that this activity probably resided on the inner side of the membrane. Following their separation by digitonin treatment, CPTO and CPTI were partially purified 14.7-and 16.7-fold, respectively. The purification of each enzyme involved extraction from the membrane with Tween 80, ammonium sulfate fractionation, gel filtration, and another ammonium sulfate fractionation. The partially purified CPTO and CPTI were found to have identical elution volumes from a G-200 column corresponding to a molecular weight of 430,000. Also they both were found to have nearly identical Km values for palmitoyl-CoA, palmitoyl-carnitine, CoA, and carnitine suggesting they were identical enzymes. The V values could not be compared due to differences in purity, but the ratio of V in the forward direction to V in the reverse direction was identical for CPTI and CPTO again suggesting enzyme identity. Assay of the CPT system “in situ” by following the reduction of the acyl-CoA dehydrogenase, a flavoprotein, suggested that the activity of CPTI was 450-fold greater than the activity of CPTO when both were present in the intact membrane. These data suggest that “in situ” factors exist which greatly change the catalytic properties of CPTI compared to CPTO.  相似文献   

19.
A major triticale (X Triticosecale Wittmack) endosperm acid phosphatase (EC 3.1.2.2) (APase) from sib-lines producing plump and shriveled seed was purified 140- and 230-fold to a specific activity of 94 and 153 micromoles per minute per milligram protein respectively, by ammonium sulfate fractionation, ion-exchange chromatography, chromatofocusing, affinity column chromatography, and gel filtration. The purified enzyme from both materials is a monomeric glycoprotein with an apparent molecular weight of 45,700 ± 500 containing 12% carbohydrate and an apparent isoelectric point of pH 5.9. It hydrolyzes tri- and di-phosphate of nucleosides as well as phosphate esters and exhibits characteristics of ATP-hydrolase and phosphatase. About 2-fold more of the APase was isolated from shriveled seeds, and the purified enzyme exhibited 3- and 5-fold higher Vmax for p-nitrophenyl phosphate and ATP, respectively, than that of plump seed. The I50 for Pi concentration was 5.5-fold higher in APase of shriveled seed than the plump one. These varied quantitative and kinetic properties substantiate the role of APase in lines with shriveled seeds being reduction of starch accumulation by depleting substrates and energy supply in the cytosol.  相似文献   

20.
FAD-containing monoamine oxidase (MAO; EC 1.4.3.4) oxidises monoamines to their corresponding aldehydes, H2O2, and NH3. It has been purified to homogeneity in mammals, but to our knowledge, there have been no reports of the enzyme in plants. MAO activity was detected in Avena sativa seedlings during germination using benzylamine as substrate. The enzyme was purified to homogeneity (as assessed by native PAGE) by Sephadex G-25, DEAE Sephacel, hydroxyapatite, Mono Q, and TSK-GEL column chromatographies. The molecular mass estimated by gel filtration using the TSK-GEL column was 220?kDa. SDS-PAGE yielded four distinct protein bands of 78, 58, 55, and 32?kDa molecular masses. The pI value of the enzyme was 6.3. The enzyme showed high substrate specificity for an endogenous amine, phenethylamine, which was oxidised to phenylacetaldehde, but not for ethylamine, propylamine, butylamine, pentylamine, dopamine, serotonin, tryptamine, or tyramine. The K m values for benzylamine and phenethylamine were 2.7?×?10?4 and 7.1?×?10?4?M, respectively. Enzyme activity was not inhibited by pargyline, clorgyline, semicarbazide, or Na-diethyldithiocarbamate. Benzaldehyde, the product of benzylamine oxidation, exhibited strong competitive inhibition of enzyme activity with a Ki of 3???M. FAD was identified by ODS-column chromatography as an enzyme cofactor. The enzyme contained 2?mol of FAD per 220,000?g of enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号