首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver fibrosis is associated with infiltrating immune cells and activation of hepatic stellate cells. We here aimed to investigate the effects of the CC chemokine CCL3, also known as macrophage inflammatory protein-1α, in two different fibrosis models. To this end, we treated mice either with carbon tetrachloride or with a methionine- and choline-deficient diet to induce fibrosis in CCL3 deficient and wild-type mice. The results show that the protein expression of CCL3 is increased in wild-type mice after chronic liver injury. Deletion of CCL3 exhibited reduced liver fibrosis compared to their wild-type counterparts. We could validate these results by treating the two mouse groups with either carbon tetrachloride or by feeding a methionine- and choline-deficient diet. In these models, lack of CCL3 is functionally associated with reduced stellate cell activation and liver immune cell infiltration. In vitro, we show that CCL3 leads to increased proliferation and migration of hepatic stellate cells. In conclusion, our results define the chemokine CCL3 as a mediator of experimental liver fibrosis. Thus, therapeutic modulation of CCL3 might be a promising target for chronic liver diseases.  相似文献   

2.
Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2?/? mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2?/? mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2?/? mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4 weeks bile duct ligation or 8 weeks CCl4 application), LCN2?/? mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.  相似文献   

3.
Zinc deficiency is common in the liver of patients with chronic liver disease. Zinc supplementation suppresses the progression of liver fibrosis induced by bile duct ligation (BDL) in mice. The present study was undertaken to specifically investigate a possible mechanism by which zinc plays this role in the liver. Kunming mice were subjected to BDL for 4 weeks to induce liver fibrosis, and concomitantly treated with zinc sulfite or saline as control by gavage once a day. The results showed that zinc supplementation significantly suppressed liver fibrosis and inflammation along with inhibition of hepatic stellate cells activation induced by BDL. These inhibitory effects were accompanied by the reduction of collagen deposition and a significant reduction of macrophage infiltration affected livers. Importantly, zinc selectively inhibited M1 macrophage polarization and M1-related inflammatory cytokines. This inhibitory effect was further confirmed by the reduction of relevant biomarkers of M1 macrophages including inducible NO synthase (iNOS), monocyte chemotactic protein-1 (MCP-1/CCL2), and tumor necrosis factor-α in the zinc supplemented BDL livers. In addition, zinc inhibition of M1 macrophages was associated with a decrease of Notch1 expression. Taken together, these data indicated that zinc supplementation inhibited liver inflammation and fibrosis in BDL mice through selective suppression of M1 macrophages, which is associated with inhibition of Notch1 pathway in M1 macrophage polarization.  相似文献   

4.
In hepatitis C virus (HCV) infection the immune response is ineffective, leading to chronic hepatitis and liver damage. Primed CD8 T cells are critical for antiviral immunity and subsets of circulating CD8 T cells have been defined in blood but these do not necessarily reflect the clonality or differentiation of cells within tissue. Current models divide primed CD8 T cells into effector and memory cells, further subdivided into central memory (CCR7+, L-selectin+), recirculating through lymphoid tissues and effector memory (CCR7-, L-selectin-) mediating immune response in peripheral organs. We characterized CD8 T cells derived from organ donors and patients with end-stage HCV infection to show that: 1) all liver-infiltrating CD8 T cells express high levels of CD11a, indicating the effective absence of naive CD8 T cells in the liver. 2) The liver contains distinct subsets of primed CD8+ T cells including a population of CCR7+ L-selectin- cells, which does not reflect current paradigms. The expression of CCR7 by these cells may be induced by the hepatic microenvironment to facilitate recirculation. 3) The CCR7 ligands CCL19 and CCL21 are present on lymphatic, vascular, and sinusoidal endothelium in normal liver and in patients with HCV infection. We suggest that the recirculation of CCR7+/L-selectin- intrahepatic CD8 T cells to regional lymphoid tissue will be facilitated by CCL19 and CCL21 on hepatic sinusoids and lymphatics. This centripetal pathway of migration would allow restimulation in lymph nodes, thereby promoting immune surveillance in normal liver and renewal of effector responses in chronic viral infection.  相似文献   

5.
近年来CC趋化因子配体2(chemokine(C-C motif)ligand 2,CCL2)在肝脏疾病发病机制中的作用越来越受到重视.大量研究表明,CCL2在各种肝损伤中表达上调.CCL2是炎症反应的主要调节因子,通过与其受体CCR2相互作用,使血液中的单核细胞穿过血管内皮向炎症部位迁移.白色脂肪组织分泌的CCL2能直接诱导肝细胞的脂肪聚集,与非酒精性肝病的发病机理密切相关.肝实质细胞分泌的CCL2能激活并募集肝星形细胞,参与肝纤维化甚至肝硬化的形成.CCL2能介导肝癌细胞的转移和浸润,刺激肿瘤血管生成,其与肿瘤的关系也成为研究的热点.本文将阐述CCL2与病毒性肝炎、酒精性肝炎、非酒精性脂肪性肝炎、肝纤维化、肝硬化和肝癌的研究进展.  相似文献   

6.

Background

Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14+CD16 and non-classical CD14+CD16+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that ‘non-classical’ monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression.

Methodology/Principal Findings

We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14+CD16+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14+CD16+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14+CD16+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14+CD16+, but not CD14+CD16 monocytes could directly activate collagen-producing HSC.

Conclusions/Significance

Our data demonstrate the expansion of CD14+CD16+ monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis.  相似文献   

7.
We investigated pathological changes, antibody response, and liver enzymes in hamsters re-infected with Opisthorchis viverrini. Group 1 received a single dose of 50 metacercariae; Groups 2 and 3 were first dosed with of 30 metacercariae and re-infected with 20 more once or twice at three month intervals. Inflammation and liver cell necrosis were observed on 3D (day 3) for Group 3 and 7D for Group 2 in comparison with 21D for Group 1. Pathological changes included peri-ductal fibrosis, bile duct dilation, and small bile duct formation. Increased O. viverrini-specific IgG levels ranked in the order Group 3>Group 2>Group 1. Liver enzyme activity was related to inflammatory cell infiltration. Re-infection induced faster inflammation and more severe pathological changes in association with parasite-specific antibody during chronic inflammation. This study emphasizes that there is an important relationship between the gradual decreases of inflammation with a concomitant increase in fibrosis after re-infection.  相似文献   

8.
MethodsIn vivo, we induced liver fibrosis by bile duct ligation (BDL), chronic carbon tetrachloride (CCl4), and chronic thioacetamide (TAA) administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs) to assess the effect of brivanib on stellate cell proliferation and activation.ResultsAfter in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF), VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor.ConclusionBrivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer.  相似文献   

9.
Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. sinenesis starting 3 days before bile duct ligation. After bile duct ligation, serum alanine transaminase increased to 760 U/l after 1 day in rats fed a control diet. Focal necrosis and bile duct proliferation were also observed after 1-2 days, and fibrosis developed 2-3 wk after bile duct ligation. Additionally, procollagen-alpha1(I) mRNA increased 30-fold 3 wk after bile duct ligation, accompanied by increased expression of alpha-smooth muscle actin and transforming growth factor-beta and the accumulation of 4-hydroxynenonal, an end product of lipid peroxidation. Polyphenol feeding blocked or blunted all of these bile duct ligation-dependent changes by 45-73%. Together, the results indicate that cholestasis due to bile duct ligation causes liver injury by mechanisms involving oxidative stress. Polyphenols from C. sinenesis scavenge oxygen radicals and prevent activation of stellate cells, thereby minimizing liver fibrosis.  相似文献   

10.
A competitive enzyme-linked immunosorbent assay (ELISA) for detection of a type I collagen fragment generated by matrix metalloproteinases (MMP) -2, -9 and -13, was developed (CO1-764 or C1M). The biomarker was evaluated in two preclinical rat models of liver fibrosis: bile duct ligation (BDL) and carbon tetra chloride (CCL4)-treated rats. The assay was further evaluated in a clinical study of prostate-, lung- and breast-cancer patients stratified according to skeletal metastases. A technically robust ELISA assay specific for a MMP-2, -9 and -13 neo-epitope was produced and seen to be statistically elevated in BDL rats compared to baseline levels as well as significantly elevated in CCL4 rats stratified according to the amount of total collagen in the livers. CO1-764 levels also correlated significantly with total liver collagen and type I collagen mRNA expression in the livers. Finally, the CO1-764 marker was not correlated with skeletal involvement or number of bone metastases. This ELISA has the potential to assess the degree of liver fibrosis in a non-invasive manner.  相似文献   

11.
Portal fibroblasts (PF) are fibrogenic liver cells distinct from hepatic stellate cells (HSC). Recent evidence suggests that PF may be important mediators of biliary fibrosis and cirrhosis. The cytokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 is upregulated in biliary fibrosis by bile duct epithelia (BDE) and induces functional responses in HSC. Thus we hypothesized that release of MCP-1 may mediate biliary fibrosis. We report that PF express functional receptors for MCP-1 that are distinct from the receptor CCR2. MCP-1 induces proliferation, increase and redistribution of alpha-smooth muscle (alpha-SMA) expression, loss of the ectonucleotidase NTPDase2, and upregulation of alpha(1)-procollagen production in PF. BDE secretions induce alpha-SMA levels in PF, and this is inhibited by MCP-1 blocking antibody. Together, these data suggest that BDE regulate PF proliferation and myofibroblastic transdifferentiation in a paracrine fashion via release of MCP-1.  相似文献   

12.
《Biomarkers》2013,18(7):616-628
A competitive enzyme-linked immunosorbent assay (ELISA) for detection of a type I collagen fragment generated by matrix metalloproteinases (MMP) -2, -9 and -13, was developed (CO1-764 or C1M). The biomarker was evaluated in two preclinical rat models of liver fibrosis: bile duct ligation (BDL) and carbon tetra chloride (CCL4)-treated rats. The assay was further evaluated in a clinical study of prostate-, lung- and breast-cancer patients stratified according to skeletal metastases. A technically robust ELISA assay specific for a MMP-2, -9 and -13 neo-epitope was produced and seen to be statistically elevated in BDL rats compared to baseline levels as well as significantly elevated in CCL4 rats stratified according to the amount of total collagen in the livers. CO1-764 levels also correlated significantly with total liver collagen and type I collagen mRNA expression in the livers. Finally, the CO1-764 marker was not correlated with skeletal involvement or number of bone metastases. This ELISA has the potential to assess the degree of liver fibrosis in a non-invasive manner.  相似文献   

13.
14.
Prophylactic antibiotics (Abx) are used before liver surgery, and the influence of antibiotic pretreatment on hepatic ischemia–reperfusion injury (IRI) remains unclear. Hence, we explored the impact of Abx pretreatment on hepatic IRI in the present work. The gut microbiota has an essential role in hepatic bile acid (BA) metabolism, and we assumed that depletion of the gut microbiota could affect the composition of hepatic BAs and affect liver IRI. The IRI model demonstrated that Abx pretreatment attenuated liver IRI by alleviating cell apoptosis, reducing the inflammatory response, and decreasing the recruitment of CCR2+ monocytes. Mechanistically, Abx pretreatment reshaped the gut microbiota, especially decreasing the relative abundance of Firmicutes and increasing the relative abundance of Clostridium, which were related to the transformation of BAs and were consistent with the altered bile acid species (unconjugated BAs, especially UDCA). These altered BAs are known FXR agonists and lead to the activation of the farnesoid X receptor (FXR), which can directly bind to the FXR response element (FXRE) harbored in the TLR4 promoter and further suppress downstream mitogen-activated protein kinase (MAPK) and nuclear kappa B (NF-κB) pathways. Meanwhile, the CCL2–CCR2 axis was also involved in the process of FXR activation, as we confirmed both in vivo and in vitro. Importantly, we proved the importance of FXR in mice and clinical occlusion samples, which were inversely correlated with liver injury. Taken together, our study identified that Abx pretreatment before liver resection was a beneficial event by activating FXR, which might become a potential therapeutic target in treating liver injury.Subject terms: Biochemistry, Molecular biology  相似文献   

15.
Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model, in which the activation of collagenases is involved in the regression of liver fibrosis. MT plays a critical role in zinc sequestration in the liver suggesting its therapeutic effect would be mediated by zinc. The present study was undertaken to test the hypothesis that zinc supplementation suppresses liver fibrosis. Male Kunming mice subjected to bile duct ligation (BDL) resulted in liver fibrosis as assessed by increased α-smooth muscle actin (α-SMA) and collagen I production/deposition in the liver. Zinc supplementation was introduced 4 weeks after BDL surgery via intragastric administration once daily for 2 weeks resulting in a significant reduction in the collagen deposition in the liver and an increase in the survival rate. Furthermore, zinc suppressed gene expression of α-SMA and collagen I and enhanced the capacity of collagen degradation, as determined by the increased activity of total collagenases and elevated mRNA and protein levels of MMP13. Therefore, the results demonstrate that zinc supplementation suppresses BDL-induced liver fibrosis through both inhibiting collagen production and enhancing collagen degradation.  相似文献   

16.
Inflammaging, characterized by an increase in low‐grade chronic inflammation with age, is a hallmark of aging and is strongly associated with various age‐related diseases, including chronic liver disease (CLD) and hepatocellular carcinoma (HCC). Because necroptosis is a cell death pathway that induces inflammation through the release of DAMPs, we tested the hypothesis that age‐associated increase in necroptosis contributes to chronic inflammation in aging liver. Phosphorylation of MLKL and MLKL oligomers, markers of necroptosis, as well as phosphorylation of RIPK3 and RIPK1 were significantly upregulated in the livers of old mice relative to young mice and this increase occurred in the later half of life (i.e., after 18 months of age). Markers of M1 macrophages, expression of pro‐inflammatory cytokines (TNFα, IL6 and IL1β), and markers of fibrosis were all significantly upregulated in the liver with age and the change in necroptosis paralleled the changes in inflammation and fibrosis. Hepatocytes and liver macrophages isolated from old mice showed elevated levels of necroptosis markers as well as increased expression of pro‐inflammatory cytokines relative to young mice. Short‐term treatment with the necroptosis inhibitor, necrostatin‐1s (Nec‐1s), reduced necroptosis, markers of M1 macrophages, fibrosis, and cell senescence as well as reducing the expression of pro‐inflammatory cytokines in the livers of old mice. Thus, our data show for the first time that liver aging is associated with increased necroptosis and necroptosis contributes to chronic inflammation in the liver, which in turn appears to contribute to liver fibrosis and possibly CLD.  相似文献   

17.
Chemokines are the inflammatory mediators that modulate liver fibrosis, a common feature of chronic inflammatory liver diseases. CX3CL1/fractalkine is a membrane-associated chemokine that requires step processing for chemotactic activity and has been recently implicated in liver disease. Here, we investigated the potential shedding activities involved in the release of the soluble chemotactic peptides from CX3CL1 in the injured liver. We showed an increased expression of the sheddases ADAM10 and ADAM17 in patients with chronic liver diseases that was associated with the severity of liver fibrosis. We demonstrated that hepatic stellate cells (HSC) were an important source of ADAM10 and ADAM17 and that treatment with the inflammatory cytokine inter-feron-γ induced the expression of CX3CL1 and release of soluble peptides. This release was inhibited by the metalloproteinase inhibitor batimastat; however, ADAM10/ADAM17 inhibitor GW280264X only partially affected shedding activity. By using selective tissue metalloprotease inhibitors and overexpression analyses, we showed that CX3CL1 was mainly processed by matrix metalloproteinase (MMP)-2, a metalloprotease highly expressed by HSC. We further demonstrated that the CX3CL1 soluble peptides released from stimulated HSC induced the activation of the CX3CR1-dependent signalling pathway and promoted chemoattraction of monocytes in vitro . We conclude that ADAM10, ADAM17 and MMP-2 synthesized by activated HSC mediate CX3CL1 shedding and release of chemotactic peptides, thereby facilitating recruitment of inflammatory cells and paracrine stimulation of HSC in chronic liver diseases.  相似文献   

18.
The liver is composed of hepatocytes, cholangiocytes, Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells (HSCs) and dendritic cells; all these functional and interstitial cells contribute to the synthesis and secretion functions of liver tissue. However, various hepatotoxic factors including infection, chemicals, high‐fat diet consumption, surgical procedures and genetic mutations, as well as biliary tract diseases such as sclerosing cholangitis and bile duct ligation, ultimately progress into liver cirrhosis after activation of fibrogenesis. Melatonin (MT), a special hormone isolated from the pineal gland, participates in regulating multiple physiological functions including sleep promotion, circadian rhythms and neuroendocrine processes. Current evidence shows that MT protects against liver injury by inhibiting oxidation, inflammation, HSC proliferation and hepatocyte apoptosis, thereby inhibiting the progression of liver cirrhosis. In this review, we summarize the circadian rhythm of liver cirrhosis and its potential mechanisms as well as the therapeutic effects of MT on liver cirrhosis and earlier‐stage liver diseases including liver steatosis, nonalcoholic fatty liver disease and liver fibrosis. Given that MT is an antioxidative and anti‐inflammatory agent that is effective in eliminating liver injury, it is a potential agent with which to reverse liver cirrhosis in its early stage.  相似文献   

19.
Chemokine receptors form a large subfamily of G protein-coupled receptors that predominantly activate heterotrimeric Gi proteins and are involved in immune cell migration. CCX-CKR is an atypical chemokine receptor with high affinity for CCL19, CCL21, and CCL25 chemokines, but is not known to activate intracellular signaling pathways. However, CCX-CKR acts as decoy receptor and efficiently internalizes these chemokines, thereby preventing their interaction with other chemokine receptors, like CCR7 and CCR9. Internalization of fluorescently labeled CCL19 correlated with β-arrestin2-GFP translocation. Moreover, recruitment of β-arrestins to CCX-CKR in response to CCL19, CCL21, and CCL25 was demonstrated using enzyme-fragment complementation and bioluminescence resonance energy transfer methods. To unravel why CCX-CKR is unable to activate Gi signaling, CCX-CKR chimeras were constructed by substituting its intracellular loops with the corresponding CCR7 or CCR9 domains. The signaling properties of chimeric CCX-CKR receptors were characterized using a cAMP-responsive element (CRE)-driven reporter gene assay. Unexpectedly, wild type CCX-CKR and a subset of the chimeras induced an increase in CRE activity in response to CCL19, CCL21, and CCL25 in the presence of the Gi inhibitor pertussis toxin. CCX-CKR signaling to CRE required an intact DRY motif. These data suggest that inactive Gi proteins impair CCX-CKR signaling most likely by hindering the interaction of this receptor with pertussis toxin-insensitive G proteins that transduce signaling to CRE. On the other hand, recruitment of the putative signaling scaffold β-arrestin to CCX-CKR in response to chemokines might allow activation of yet to be identified signal transduction pathways.  相似文献   

20.
In this study we investigated TNF-alpha and leptin levels in two different liver fibrosis models induced by carbon tetrachloride (CCl(4)) and common bile duct ligation (CBDL). A total of 36 male rats of Albino-Wistar strain were allocated to three groups. One of the groups was the control. The second group received 0.15 ml 100 g(-1) CCl(4) subcutaneously for 6 weeks, 3 days per week. The third group underwent common bile duct ligation (CBDL) and was monitored for 4 weeks. Histopathological investigation included fibrosis, steatosis and inflammation. Serum IL-6 and TNF-alpha levels were analysed by ELISA methods and leptin was analysed by RIA. Fibrosis and steatosis increased significantly in the CCl(4) group in comparison with the CBDL group (p < 0.01; p < 0.001). Leptin and TNF-alpha levels in CCl(4) group were higher than those in the CBDL and control groups (p < 0.05). TNF-alpha and leptin levels were not related to each another in either the CCl(4) group or the CBDL group (r=0.22, p > 0.05; r=0.19, p > 0.05). The IL-6 level was higher in the CCl(4) group in relation to severity of inflammation (p < 0.05). TNF-alpha and leptin levels were higher in animals with liver fibrosis induced by CCl(4), than they were in those whose liver fibrosis was induced by common bile duct ligation. Leptin and TNF-alpha may be less effective on the development of liver fibrosis in the group which underwent common bile duct ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号