首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
UAT, also designated galectin 9, is a multifunctional protein that can function as a urate channel/transporter, a regulator of thymocyte-epithelial cell interactions, a tumor antigen, an eosinophil chemotactic factor, and a mediator of apoptosis. We review the evidence that UAT is a transmembrane protein that transports urate, describe our molecular model for this protein, and discuss the evidence from epitope tag and lipid bilayer studies that support this model of the transporter. The properties of recombinant UAT are compared with those of urate transport into membrane vesicles derived from proximal tubule cells in rat kidney cortex. In addition, we review channel functions predicted by our molecular model that resulted in the novel finding that the urate channel activity is regulated by sugars and adenosine. Finally, the presence and possible functions of at least 4 isoforms of UAT and a closely related gene hUAT2 are discussed. Published in 2004.  相似文献   

2.
Recombinant protein, designated UAT, prepared from a cloned rat renal cDNA library functions as a selective voltage-sensitive urate transporter/channel when fused with lipid bilayers. Since we previously suggested that UAT may represent the mammalian electrogenic urate transporter, UAT has been functionally characterized in the presence and absence of potential channel blockers, several of which are known to block mammalian electrogenic urate transport. Two substrates, oxonate (a competitive uricase inhibitor) and pyrazinoate, that inhibit renal electrogenic urate transport also block UAT activity. Of note, oxonate selectively blocks from the cytoplasmic side of the channel while pyrazinoate only blocks from the channel's extracellular face. Like oxonate, anti-uricase (an electrogenic transport inhibitor) also selectively blocks channel activity from the cytoplasmic side. Adenosine blocks from the extracellular side exclusively while xanthine blocks from both sides. These effects are consistent with newly identified regions of homology to uricase and the adenosine A1/A3 receptor in UAT and localize these homologous regions to the cytoplasmic and extracellular faces of UAT, respectively. Additionally, computer analyses identified four putative α-helical transmembrane domains, two β sheets, and blocks of homology to the E and B loops of aquaporin-1 within UAT. The experimental observations substantiate our proposal that UAT is the molecular representation of the renal electrogenic urate transporter and, in conjunction with computer algorithms, suggest a possible molecular structure for this unique channel. Received: 13 October 1998/Revised: 28 January 1999  相似文献   

3.
Recombinant proteinproduced from a cDNA cloned in our laboratory (UAT) functions in lipidbilayers as a urate transporter/channel. Because UAT is a galectin, afamily of proteins presumed to be soluble, the localization andtopology of UAT were assessed in living cells. UAT was targeted toplasma membrane in multiple epithelium-derived cell lines and, inpolarized cells, was targeted to both apical and basolateral membranes.The amino and carboxy termini of UAT were both detected on thecytoplasmic side of plasma membranes, whereas cell surfacebiotinylation studies demonstrated that UAT is not merely a cytosolicmembrane-associated protein but contains at least one extracellulardomain. Madin-Darby canine kidney cells were shown both functionallyand immunologically to contain an apparent homolog of UAT; however,transfection with UAT did not modify urate uptake. Becausecoimmunoprecipitation studies revealed that UAT is capable of formingboth homo- and heteromultimers, it is proposed that monomers ofendogenous channels are in part replaced by monomers of the proteinexpressed subsequent to transfection, thereby maintaining constancy ofurate uptake at basal levels.

  相似文献   

4.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

5.
Hyperuricemia is a significant factor in a variety of diseases, including gout and cardiovascular diseases. Although renal excretion largely determines plasma urate concentration, the molecular mechanism of renal urate handling remains elusive. Previously, we identified a major urate reabsorptive transporter, URAT1 (SLC22A12), on the apical side of the renal proximal tubular cells. However, it is not known how urate taken up by URAT1 exits from the tubular cell to the systemic circulation. Here, we report that a sugar transport facilitator family member protein GLUT9 (SLC2A9) functions as an efflux transporter of urate from the tubular cell. GLUT9-expressed Xenopus oocytes mediated saturable urate transport (K(m): 365+/-42 microm). The transport was Na(+)-independent and enhanced at high concentrations of extracellular potassium favoring negative to positive potential direction. Substrate specificity and pyrazinoate sensitivity of GLUT9 was distinct from those of URAT1. The in vivo role of GLUT9 is supported by the fact that a renal hypouricemia patient without any mutations in SLC22A12 was found to have a missense mutation in SLC2A9, which reduced urate transport activity in vitro. Based on these data, we propose a novel model of transcellular urate transport in the kidney; urate [corrected] is taken up via apically located URAT1 and exits the cell via basolaterally located GLUT9, which we suggest be renamed URATv1 (voltage-driven urate transporter 1).  相似文献   

6.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

7.
The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4.  相似文献   

8.
Increased levels of serum urate in postmenopausal women are thought to be caused by a change in renal urate elimination associated with the loss of female hormones. In this study, we investigated the regulation of renal urate transporter expression by female hormones using ovariectomized mice with or without hormone replacement. Estradiol suppressed the protein levels of urate reabsorptive transporters urate transporter 1 and glucose transporter 9 (Urat1 and Glut9), and that of urate efflux transporter ATP-binding cassette sub-family G member 2 (Abcg2). Progesterone suppressed protein levels of sodium-coupled monocarboxylate transporter 1 (Smct1). However, neither estradiol nor progesterone influenced the respective levels of mRNA.  相似文献   

9.
Recent crystal structures of the CorA Mg(2+) transport protein from Thermotoga maritima (TmCorA) revealed an unusually long ion pore putatively gated by hydrophobic residues near the intracellular end and by universally conserved asparagine residues at the periplasmic entrance. A conformational change observed in an isolated funnel domain structure also led to a proposal for the structural basis of gating. Because understanding the molecular mechanisms underlying ion channel and transporter gating remains an important challenge, we have undertaken a structure-guided engineering approach to probe structure-function relationships in TmCorA. The intracellular funnel domain is shown to constitute an allosteric regulatory module that can be engineered to promote an activated or closed state. A periplasmic gate centered about a proline-induced kink of the pore-lining helix is described where "helix-straightening" mutations produce a dramatic gain-of-function. Mutation to the narrowest constriction along the pore demonstrates that a hydrophobic gate is operational within this Mg(2+)-selective transport protein and likely forms an energetic barrier to ion flux. We also provide evidence that highly conserved acidic residues found in the short periplasmic loop are not essential for TmCorA function or Mg(2+) selectivity but may be required for proper protein folding and stability. This work extends our gating model for the CorA-Alr1-Mrs2 superfamily and reveals features that are characteristic of an ion channel. Aspects of these results that have broader implications for a range of channel and transporter families are highlighted.  相似文献   

10.
High blood urate levels (hyperuricemia) have been found to be a significant risk factor for cardiovascular diseases and inflammatory arthritis, such as hypertension and gout. Human glucose transporter 9 (hSLC2A9) is an essential protein that mainly regulates urate/hexose homeostasis in human kidney and liver. hSLC2A9 is a high affinity-low capacity hexose transporter and a high capacity urate transporter. Our previous studies identified a single hydrophobic residue in trans-membrane domain 7 of class II glucose transporters as a determinant of fructose transport. A mutation of isoleucine 335 to valine (I355V) in hSLC2A9 can reduce fructose transport while not affecting glucose fluxes. This current study demonstrates that the I335V mutant transports urate similarly to the wild type hSLC2A9; however, Ile-335 is necessary for urate/fructose trans-acceleration exchange to occur. Furthermore, Trp-110 is a critical site for urate transport. Two structural models of the class II glucose transporters, hSLC2A9 and hSLC2A5, based on the crystal structure of hSLC2A1 (GLUT1), reveal that Ile-335 (or the homologous Ile-296 in hSLC2A5) is a key component for protein conformational changes when the protein translocates substrates. The hSLC2A9 model also predicted that Trp-110 is a crucial site that could directly interact with urate during transport. Together, these studies confirm that hSLC2A9 transports both urate and fructose, but it interacts with them in different ways. Therefore, this study advances our understanding of how hSLC2A9 mediates urate and fructose transport, providing further information for developing pharmacological agents to treat hyperuricemia and related diseases, such as gout, hypertension, and diabetes.  相似文献   

11.
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.  相似文献   

12.
The orphan transporter hORCTL3 (human organic cation transporter like 3; SLC22A13) is highly expressed in kidneys and to a weaker extent in brain, heart, and intestine. hORCTL3-expressing Xenopus laevis oocytes showed uptake of [(3)H]nicotinate, [(3)H]p-aminohippurate, and [(14)C]urate. Hence, hORCTL3 is an organic anion transporter, and we renamed it hOAT10. [(3)H]Nicotinate transport by hOAT10 into X. laevis oocytes and into Caco-2 cells was saturable with Michaelis constants (K(m)) of 22 and 44 microm, respectively, suggesting that hOAT10 may be the molecular equivalent of the postulated high affinity nicotinate transporter in kidneys and intestine. The pH dependence of hOAT10 suggests p-aminohippurate(-)/OH(-), urate(-)/OH(-), and nicotinate(-)/OH(-) exchange as possible transport modes. Urate inhibited [(3)H]nicotinate transport by hOAT10 with an IC(50) value of 759 microm, assuming that hOAT10 represents a low affinity urate transporter. hOAT10-mediated [(14)C]urate uptake was elevated by an exchange with l -lactate, pyrazinoate, and nicotinate. Surprisingly, we have detected urate(-)/glutathione exchange by hOAT10, consistent with an involvement of hOAT10 in the renal glutathione cycle. Uricosurics, diuretics, and cyclosporine A showed substantial interactions with hOAT10, of which cyclosporine A enhanced [(14)C]urate uptake, providing the first molecular evidence for cyclosporine A-induced hyperuricemia.  相似文献   

13.
Although dietary, genetic, or disease-related excesses in urate production may contribute to hyperuricemia, impaired renal excretion of uric acid is the dominant cause of hyperuricemia in the majority of patients with gout. The aims of this review are to highlight exciting and clinically pertinent advances in our understanding of how uric acid is reabsorbed by the kidney under the regulation of urate transporter (URAT)1 and other recently identified urate transporters; to discuss urate-lowering agents in clinical development; and to summarize the limitations of currently available antihyperuricemic drugs. The use of uricosuric drugs to treat hyperuricemia in patients with gout is limited by prior urolothiasis or renal dysfunction. For this reason, our discussion focuses on the development of the novel xanthine oxidase inhibitor febuxostat and modified recombinant uricase preparations.  相似文献   

14.
Rat renal proximal tubule cell membranes have been reported to contain uricase-like proteins that function as electrogenic urate transporters. Although uricase, per se, has only been detected within peroxisomes in rat liver (where it functions as an oxidative enzyme) this protein has been shown to function as a urate transport protein when inserted into liposomes. Since both the uricase-like renal protein and hepatic uricase can transport urate, reconstitution studies were performed to further characterize the mechanism by which uricase may function as a transport protein. Ion channel activity was evaluated in planar lipid bilayers before and after fusion of uricase-containing proteoliposomes. In the presence of symmetrical solutions of urate and KCl, but absence of uricase, no current was generated when the voltage was ramped between ±100 mV. Following fusion of uricase with the bilayer, single channel activity was evident: the reconstituted channel rectified with a mean slope conductance of 8 pS, displayed voltage sensitivity, and demonstrated a marked selectivity for urate relative to K+ and Cl. The channel was more selective to oxonate, an inhibitor of both enzymatic uricase activity and urate transport, than urate and it was equally selective to urate and pyrazinoate, an inhibitor of urate transport. With time, pyrazinoate blocked both its own movement and the movement of urate through the channel. Channel activity was also blocked by the IgG fraction of a polyclonal antibody to affinity purified pig liver uricase. These studies demonstrate that a highly selective, voltage dependent organic anion channel is formed when a purified preparation of uricase is reconstituted in lipid bilayers.This work was supported in part by the G. Harold and Leila Y. Mathers Charitable Foundation (E.L.P. and R.D.L.), the Irma T. Hirschl Trust (R.D.L.), National Institutes of Health grant DK08419 (B.A.K.) and a Grant-in-Aid from the American Heart Association, N.Y.C. Affiliate (R.G.A.).  相似文献   

15.
Human SLC2A9 (GLUT9) is a novel high-capacity urate transporter belonging to the facilitated glucose transporter family. In the present study, heterologous expression in Xenopus oocytes has allowed us to undertake an in-depth radiotracer flux and electrophysiological study of urate transport mediated by both isoforms of SLC2A9 (a and b). Addition of urate to SLC2A9-producing oocytes generated outward currents, indicating electrogenic transport. Urate transport by SLC2A9 was voltage dependent and independent of the Na(+) transmembrane gradient. Urate-induced outward currents were affected by the extracellular concentration of Cl(-), but there was no evidence for exchange of the two anions. [(14)C]urate flux studies under non-voltage-clamped conditions demonstrated symmetry of influx and efflux, suggesting that SLC2A9 functions in urate efflux driven primarily by the electrochemical gradient of the cell. Urate uptake in the presence of intracellular hexoses showed marked differences between the two isoforms, suggesting functional differences between the two splice variants. Finally, the permeant selectivity of SLC2A9 was examined by testing the ability to transport a panel of radiolabeled purine and pyrimidine nucleobases. SLC2A9 mediated the uptake of adenine in addition to urate, but did not function as a generalized nucleobase transporter. The differential expression pattern of the two isoforms of SLC2A9 in the human kidney's proximal convoluted tubule and its electrogenic transport of urate suggest that these transporters play key roles in the regulation of plasma urate levels and are therefore potentially important participants in hyperuricemia and hypouricemia.  相似文献   

16.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   

17.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   

18.
Extracellular tonicity and volume regulation control a great number of molecular and cellular functions including: cell proliferation, apoptosis, migration, hormone and neuromediator release, gene expression, ion channel and transporter activity and metabolism. The aim of this review is to describe these effects and to determine if they are direct or are secondarily the result of the activity of second messengers.  相似文献   

19.
Glutamate transporters are unusual proteins in that they can function as both a transporter and a chloride channel. With the recent determination of the crystal structure of an archaeal aspartate transporter it is now possible to begin to put together a physical picture of how these proteins are able to carry out their dual functions. In this review we shall discuss our current understanding of the functional states of glutamate transporters and how they may arise. We will also discuss some of the alternate conducting states of glutamate transporters and provide definitions of the various states.  相似文献   

20.
Glutamate transporters are unusual proteins in that they can function as both a transporter and a chloride channel. With the recent determination of the crystal structure of an archaeal aspartate transporter it is now possible to begin to put together a physical picture of how these proteins are able to carry out their dual functions. In this review we shall discuss our current understanding of the functional states of glutamate transporters and how they may arise. We will also discuss some of the alternate conducting states of glutamate transporters and provide definitions of the various states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号