首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble aggregates critically influence the chemical and biological aspects of amyloid protein aggregation, but their population is difficult to measure, especially in vivo. We take an optical fiber-based fluorescence correlation spectroscopy (FCS) approach to characterize a solution of aggregating amyloid-beta molecules. We find that this technique can easily resolve aggregate particles of size 100 nm or greater in vitro, and the size distribution of these particles agrees well with that obtained by conventional FCS techniques. We propose fiber FCS as a tool for studying aggregation in vivo.  相似文献   

2.
Soluble aggregates critically influence the chemical and biological aspects of amyloid protein aggregation, but their population is difficult to measure, especially in vivo. We take an optical fiber-based fluorescence correlation spectroscopy (FCS) approach to characterize a solution of aggregating amyloid-β molecules. We find that this technique can easily resolve aggregate particles of size 100 nm or greater in vitro, and the size distribution of these particles agrees well with that obtained by conventional FCS techniques. We propose fiber FCS as a tool for studying aggregation in vivo.  相似文献   

3.
Fluorescence correlation spectroscopy (FCS) is becoming increasingly popular as a technique that aims at complementing live cell images with biophysical information. This article provides both a short overview over recent intracellular FCS applications and a practical guide for investigators, who are seeking to integrate FCS into live cell imaging to obtain information on particle mobility, local concentrations, and molecular interactions. A brief introduction to the principles of FCS is provided, particularly emphasizing practical aspects such as the choice of appropriate dyes and positioning of the measurement volume in the sample. Possibilities and limitations in extracting parameters from autocorrelation curves are discussed, and attention is drawn to potential artifacts, such as photobleaching and probe aggregation. The principle of dual-color cross-correlation is reviewed along with considerations for proper setup and adjustment. Practical implications of nonideal conditions including incomplete focus overlap and spectral cross-talk are considered. Recent examples of both auto- and cross-correlation applications demonstrate the potential of FCS for cell biology.  相似文献   

4.
This review describes the method of fluorescence correlation spectroscopy (FCS) and its applications. FCS is used for investigating processes associated with changes in the mobility of molecules and complexes and allows researchers to study aggregation of particles, binding of fluorescent molecules with supramolecular complexes, lipid vesicles, etc. The size of objects under study varies from a few angstroms for dye molecules to hundreds of nanometers for nanoparticles. The described applications of FCS comprise various fields from simple chemical systems of solution/micelle to sophisticated regulations on the level of living cells. Both the methodical bases and the theoretical principles of FCS are simple and available. The present review is concentrated preferentially on FCS applications for studies on artificial and natural membranes. At present, in contrast to the related approach of dynamic light scattering, FCS is poorly known in Russia, although it is widely employed in laboratories of other countries. The goal of this review is to promote the development of FCS in Russia so that this technique could occupy the position it deserves in modern Russian science.  相似文献   

5.
Scanning fluctuation correlation spectroscopy (FCS) is an experimental technique capable of measuring particle number concentrations by monitoring spontaneous equilibrium fluctuations in the local concentration of a fluorescent species in a small (femtoliter) subvolume of a sample. The method can be used to detect molecular aggregation for dilute, submicromolar samples by directly "counting particles". We introduce the application of two-photon excitation to scanning FCS and discuss its important advantages for this technique. We demonstrate the capability of measuring particle number concentrations in solution, first with dilute samples of monodisperse 7-nm and 15-nm radius latex spheres, and then with B phycoerythrin. The detection of multiple species in a single sample is shown, using mixtures containing both sphere sizes. The method is then applied to study protein aggregation in solution. We monitor the concentration-dependent association/ dissociation equilibrium for glycogen phosphorylase A and malate dehydrogenase. The measured dissociation constants, 430 nM and 144 nM respectively, are in good agreement with previously published values. In addition, oligomer dissociation induced by pH titration from pH 8 to pH 5.0 is detectable for the enyme phosphofructokinase. The possibility of measuring dissociation kinetics by scanning two-photon FCS is also demonstrated using phosphofructokinase.  相似文献   

6.
荧光相关谱技术及其应用   总被引:3,自引:1,他引:2  
基于对处于平衡态少量荧光分子集合的强度涨落进行时间平均的技术,荧光相关谱fluoreswceance correlation spectroscopy,FCS)技术最近已经应用于细胞环境过程的研究。FCS优秀的灵敏特性为我们实时测量许多参数提供了途径,而且具有快速的时间特性和高空间分辨率。测量的参数包括扩散速率、局部浓度、聚合状态和分子间的相互作用。荧光互相关谱(fluorescence cross-correlation spectroscopy,FCCS)进一步扩展了FCS技术的应用,包括在活细胞中的广泛应用。本文介绍了FCS技术的原理、实验装置及其应用。  相似文献   

7.
The lateral organization of receptors on cell surfaces is critically important to their function; many receptors transmit transmembrane signals when redistributed into clusters, while the response of others is potentiated by their aggregation. Cell-cell contact can play a crucial role in receptor aggregation, even when the bonds between receptors on one cell and ligands on the other are monovalent. Monte Carlo simulations on a two-membrane model were carried out to determine whether weak enthalpic interactions among receptors in one membrane, and among ligands in another, can work synergistically to give large-scale clustering when the two membranes are brought into contact. The simulations give support to such a clustering mechanism. In addition, because clustering is a cooperative process akin to a phase separation, individual receptors and ligands may undergo repeated binding and unbinding while in a clustered "phase," and a single ligand could interact with multiple different receptor partners. The results suggest a resolution of the dichotomy between serial triggering and aggregation models of T cell activation.  相似文献   

8.
Fluorescence Correlation Spectroscopy (FCS) can measure diffusion on the cell surface with unparalleled sensitivity. In appropriate situations, this can be the most sensitive and accurate method for measuring receptor interaction and oligomerization. Here we attempt to describe FCS in sufficient detail so that the reader is able to judge when there is a compelling reason to choose this technique, understand the basic theory behind it, construct a FCS spectrometer in the laboratory, and analyze the data to obtain a meaningful estimate of the physical parameters.  相似文献   

9.
Protein aggregation is an essential molecular event in a wide variety of biological situations, and is a causal factor in several degenerative diseases. The aggregation of proteins also frequently hampers structural biological analyses, such as solution NMR studies. Therefore, precise detection and characterization of protein aggregation are of crucial importance for various research fields. In this study, we demonstrate that fluorescence correlation spectroscopy (FCS) using a single‐molecule fluorescence detection system enables the detection of otherwise invisible aggregation of proteins at higher protein concentrations, which are suitable for structural biological experiments, and consumes relatively small amounts of protein over a short measurement time. Furthermore, utilizing FCS, we established a method for high‐throughput screening of protein aggregation and optimal solution conditions for structural biological experiments.  相似文献   

10.
Fluorescence correlation spectroscopy (FCS) is a powerful technique to study dynamic biomolecular processes. It allows the estimation of concentrations, diffusion coefficients, molecular interactions, and other processes causing fluctuations in the fluorescence intensity, thus yielding information about aggregation processes, enzymatic reactions, or partition coefficients. During the last years, FCS has been successfully applied to model and cellular membranes, proving to be a promising tool for the study of membrane dynamics and protein/lipid interactions. Here we describe the theoretical basis of FCS and some practical implications for its application in membrane studies. We discuss sources of potential artifacts, such as membrane undulations, positioning of the detection volume, and photobleaching. Special attention is paid to aspects related to instrumentation and sample preparation as well as data acquisition and analysis. Finally, we comment on some strategies recently developed for the specific improvement of FCS measurements on membranes.  相似文献   

11.
We have studied Hansenula polymorpha Pex5p and Pex8p using fluorescence correlation spectroscopy (FCS). Pex5p is the Peroxisomal Targeting Signal 1 (PTS1) receptor and Pex8p is an intraperoxisomal protein. Both proteins are essential for PTS1 protein import and have been shown to physically interact. We used FCS to analyze the molecular role of this interaction. FCS is a very sensitive technique that allows analysis of dynamic processes of fluorescently marked molecules at equilibrium in a very tiny volume. We used this technique to determine the oligomeric state of both peroxins and to analyze binding of Pex5p to PTS1 peptides and Pex8p. HpPex5p and HpPex8p were overproduced in Escherichia coli, purified by affinity chromatography, and, when required, labeled with the fluorescent dye Alexa Fluor 488. FCS measurements revealed that the oligomeric state of HpPex5p varied, ranging from monomers at slightly acidic pH to tetramers at neutral pH. HpPex8p formed monomers at all pH values tested. Using fluorescein-labeled PTS1 peptide and unlabeled HpPex5p, we established that PTS1 peptide only bound to tetrameric HpPex5p. Upon addition of HpPex8p, a heterodimeric complex was formed consisting of one HpPex8p and one HpPex5p molecule. This process was paralleled by dissociation of PTS1 peptide from HpPex5p, indicating that Pex8p may play an important role in cargo release from the PTS1 receptor. Our data show that FCS is a powerful technique to explore dynamic physical interactions that occur between peroxins during peroxisomal matrix protein import.  相似文献   

12.
Scanning Fluorescence Correlation Spectroscopy (S-FCS) is introduced as an adaptation of Fluorescence Correlation Spectroscopy (FCS) to measure aggregation in systems, such as biological cell membranes, where diffusion or flow is slow. The theoretical framework for interpretation of S-FCS measurements are discussed in this paper with emphasis on the limitations arising from the sample size and shape. Computer simulations of the experiment demonstrate the potential of the technique and illustrate how some of the limitations may be overcome.  相似文献   

13.
Abnormal aggregation of misfolded proteins and their deposition as inclusion bodies in the brain have been implicated as a common molecular pathogenesis of neurodegenerative diseases including Alzheimer, Parkinson, and the polyglutamine (poly(Q)) diseases, which are collectively called the conformational diseases. The poly(Q) diseases, including Huntington disease and various types of spinocerebellar ataxia, are caused by abnormal expansions of the poly(Q) stretch within disease-causing proteins, which triggers the disease-causing proteins to aggregate into insoluble beta-sheet-rich amyloid fibrils. Although oligomeric structures formed in vitro are believed to be more toxic than mature amyloid fibrils in these diseases, the existence of oligomers in vivo has remained controversial. To explore oligomer formation in cells, we employed fluorescence correlation spectroscopy (FCS), which is a highly sensitive technique for investigating the dynamics of fluorescent molecules in solution. Here we demonstrate direct evidence for oligomer formation of poly(Q)-green fluorescent protein (GFP) fusion proteins expressed in cultured cells, by showing a time-dependent increase in their diffusion time and particle size by FCS. We show that the poly(Q)-binding peptide QBP1 inhibits poly(Q)-GFP oligomer formation, whereas Congo red only inhibits the growth of oligomers, but not the initial formation of the poly(Q)-GFP oligomers, suggesting that FCS is capable of identifying poly(Q) oligomer inhibitors. We therefore conclude that FCS is a useful technique to monitor the oligomerization of disease-causing proteins in cells as well as its inhibition in the conformational diseases.  相似文献   

14.
Previously we introduced image correlation spectroscopy (ICS) as an imaging analog of fluorescence correlation spectroscopy (FCS). Implementation of ICS with image collection via a standard fluorescence confocal microscope and computer-based autocorrelation analysis was shown to facilitate measurements of absolute number densities and determination of changes in aggregation state for fluorescently labeled macromolecules. In the present work we illustrate how to use ICS to quantify the aggregation state of immunolabeled plasma membrane receptors in an intact cellular milieu, taking into account background fluorescence. We introduce methods that enable us to completely remove white noise contributions from autocorrelation measurements for individual images and illustrate how to perform background corrections for autofluorescence and nonspecific fluorescence on cell population means obtained via ICS. The utilization of photon counting confocal imaging with ICS analysis in combination with the background correction techniques outlined enabled us to achieve very low detection limits with standard immunolabeling methods on normal, nontransformed human fibroblasts (AG1523) expressing relatively low numbers of platelet-derived growth factor-beta (PDGF-beta) receptors. Specifically, we determined that the PDGF-beta receptors were preaggregated as tetramers on average with a mean surface density of 2.3 clusters micrometer(-2) after immunolabeling at 4 degreesC. These measurements, which show preclustering of PDGF-beta receptors on the surface of normal human fibroblasts, contradict a fundamental assumption of the ligand-induced dimerization model for signal transduction and provide support for an alternative model that posits signal transduction from within preexisting receptor aggregates.  相似文献   

15.
T Wohland  K Friedrich  R Hovius  H Vogel 《Biochemistry》1999,38(27):8671-8681
The 5-hydroxytryptamine receptor of type 3 was investigated by fluorescence correlation spectroscopy (FCS). Binding constants of fluorescently labeled ligands, the stoichiometry, and the mass of the receptor are readily accessible by this technique, while the duration of measurement is on the order of seconds to minutes. The receptor antagonist 1,2,3, 9-tetrahydro-3-[(5-methyl-1H-imidazol-4-yl)methyl]-9-(3-aminopropyl)- 4H-carbazol-4-one (GR-H) was labeled with the fluorophores rhodamine 6G, fluorescein, N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl], and the cyanine dye Cy5. These labels cover a large part of the visible electromagnetic spectrum. It is shown that the photophysical and chemical properties have a direct influence on the measurement quality (duration of measurement, signal-to-noise ratio) and the ligand-receptor interactions (dissociation constants), respectively. This makes it necessary to choose a suitable label or a combination of labels for receptor studies. The affinities of the fluorescently labeled ligands determined by FCS were virtually identical to the values obtained by radioligand binding experiments. Moreover, the dissociation constant of a nonfluorescent receptor ligand was determined successfully by an FCS competition assay. The experimental results showed that only one antagonist binds to the receptor, in agreement with measurements previously published [Tairi et al. (1998) Biochemistry 37, 15850-15864].  相似文献   

16.
Pramanik A  Olsson M  Langel U  Bartfai T  Rigler R 《Biochemistry》2001,40(36):10839-10845
Fluorescence correlation spectroscopy (FCS) allows the study of interactions of fluorescently labeled ligand with receptors in living cells at single-molecule detection sensitivity. From the autocorrelation functions of fluorescence intensity fluctuations, the diffusion time of molecules through the confocal volume is analyzed, and from that, the molecular weights of free and bound molecules can be calculated. We have applied FCS to study the receptor diversity for the neuropeptide galanin (GAL) in cultured cells. FCS measurement of the fluorophore rhodamine-labeled GAL (Rh-GAL) has been performed in 0.2-fL confocal volume elements of the laser beam. The analysis of autocorrelation functions of Rh-GAL in solution above cells and at cell membranes demonstrates that the diffusion time of unbound Rh-GAL is 0.16 ms, whereas diffusion times of membrane-bound Rh-GAL are 22 and 700 ms. Because both of the diffusion times (22 and 700 ms) are much longer as compared to that of unbound Rh-GAL, they correspond to slow-diffusing complexes when Rh-GAL is bound to the cell membranes. Addition of excess nonlabeled GAL is accompanied by competitive displacement. Full saturation of the GAL binding is obtained at nanomolar concentrations. Scatchard analysis of binding data reveal one binding process, assuming one binding site per Rh-GAL (n = 1). On the other hand, the appearance of two diffusion times, 22 and 700 ms, suggests the existence of two subpopulations of GAL receptor complexes or two subtypes of GAL receptor not detected before. This makes an important point that FCS permits the identification of receptors, which were not possible to detect before by conventional binding techniques. The inhibitory effect of pertussis toxin on the GAL binding considers a G-protein-involved allosteric system, important for the clarification of essential steps in the G-protein-related signal transduction. This study is of pharmaceutical significance, since it will provide insights into how FCS can be used as a rapid technique for studying ligand-receptor interactions in living cells, which is one step forward for large-scale drug screening in cell cultures.  相似文献   

17.
Fluorescence correlation spectroscopy (FCS) has been increasingly used to study the binding of fluorescently-labeled peptides and proteins to phospholipid vesicles. In this work, we present a new method to analyze partition data obtained by this technique based on the assumption that the number of fluorescently-labeled protein molecules bound per liposome follows a Poisson distribution. To not overestimate the recovered partition coefficients, we first show that the variation in liposome brightness caused by this statistical distribution must be considered explicitly in data analysis when the parameter used to establish the partition curves is the fractional instead of the absolute amplitudes associated with the slowest diffusing particles in the system (lipid vesicles), a choice frequently made in FCS partition studies. We further extend the theoretical model describing the membrane partition of a fluorescently-labeled protein by considering the presence of a trace amount of free fluorescent dye (non-binding component) in the system. We show that this situation can account for an apparent maximal binding level lower than 100% in the experimental partitioning curves obtained for Alexa 488 fluorescently-labeled lysozyme and liposomes prepared with variable anionic phospholipid content. The extreme sensitivity of the FCS technique allowed uncoupling lysozyme partition from the protein-induced liposome aggregation, confirming that lysozyme binding to negatively charged liposomes is dominantly driven by electrostatic interactions.  相似文献   

18.
Single-molecule photobleaching (smPB) technique is a powerful tool for characterizing molecular assemblies. It can provide a direct measure of the number of monomers constituting a given oligomeric particle and generate the oligomer size distribution in a specimen. A major current application of this technique is in understanding protein aggregation, which is linked to many incurable diseases. Quantitative measurement of the size distribution of an aggregating protein in a physiological solution remains a difficult task, since techniques such as dynamic light scattering or fluorescence correlation spectroscopy (FCS) can provide an average size, but cannot accurately resolve the underlying size distribution. Here we describe the smPB method as implemented on a home-built total internal reflection fluorescence microscope (TIRF). We first describe the construction of a TIRF microscope, and then demonstrate the power of smPB by characterizing a solution of Amylin (hIAPP) oligomers, a 37-residue peptide whose aggregation is associated with Type II diabetes. We compare our results with FCS data obtained from the same specimen, and discuss the advantages and disadvantages of the two techniques.  相似文献   

19.
Although many indirect methods have been chosen to study the system of estrogen receptor ligand binding, an ideal method is fluorescence correlation spectroscopy (FCS). FCS is nondestructive to the sample, uses very small sample volumes, and operates well within physiological concentration ranges. The methodology was developed to biotinylate the estrogen receptor beta-ligand binding domain (ERbeta-LBD) using biotin with a very short spacer and to then attach this protein to a 40 nm neutravidin-coated bead (nanosphere). Diffusional FCS data were obtained for a fluorescently labeled coactivator peptide, steroid receptor coactivator peptide-1 (A-SRC-1(2)), in the absence and presence of bead-bound ERbeta-LBD. Data were also acquired in the presence of one of the endogenous ligands for ERbeta, 17beta-estradiol, and with tamoxifen. The bead strategy resulted in a decreased receptor diffusion coefficient and consequent increase in the decay time of the FCS autocorrelation functions for receptor-bound, labeled SRC-1(2). Thus, free and bound coactivators were much more readily distinguished by FCS. Discrimination between the fluorescently labeled unbound and bound species could be determined in autocorrelation functions obtained in as few as 30 s. The advantage of using FCS with the ERbeta-LBD: bead methodology is the ability to obtain reliable and reproducible data in a short time frame.  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) is a powerful technique to measure chemical reaction rates and diffusion coefficients of molecules in thermal equilibrium. The capabilities of FCS can be enhanced by measuring the energy, polarization, or delay time between absorption and emission of the collected fluorescence photons in addition to their arrival times. This information can be used to change the relative intensities of multiple fluorescent species in FCS measurements and, thus, the amplitude of the intensity autocorrelation function. Here we demonstrate this strategy using lifetime gating in FCS experiments. Using pulsed laser excitation and laser-synchronized gating in the detection channel, we suppress photons emitted within a certain time interval after excitation. Three applications of the gating technique are presented: suppression of background fluorescence, simplification of FCS reaction studies, and investigation of lifetime heterogeneity of fluorescently labeled biomolecules. The usefulness of this technique for measuring forward and backward rates of protein fluctuations in equilibrium and for distinguishing between static and dynamic heterogeneity makes it a promising tool in the investigation of chemical reactions and conformational fluctuations in biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号