首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electric spatial pattern and invertase activity distribution in growing roots of azuki bean (Phaseolus chrysanthos) have been studied. The electric potential near the surface along the root showed a banding pattern with a spatial period of about 2 cm. It was found that the enzyme activity has a peak around 3-7 mm from the root tip, in good agreement with the position of the first peak of the electric potential, which is located a little behind the elongation zone. An inhomogeneous distribution of ATP content was also detected along the root. Experiments on the electric isolation of the elongation zone from the mature zone and acidification treatment showed that H+ is transported from the mature-side to elongation-side regions, causing tip elongation through an acid-growth mechanism. Both acidification and electric disturbance on growing roots affected growth significantly. Simultaneous measurements of electric potential and enzyme activity clearly showed a good correlation between these two quantities and growth speed. From an analogy with the Characean banding, the spatio-temporal organization via the cell membrane in electric potential and enzyme activity can be regarded as a dissipative structure arising far from equilibrium. These experimental results can be interpreted with a new mechanism that the dissipative structure is formed spontaneously along the whole root, accompanied by energy metabolism, to make H+ flow into the root tip.  相似文献   

2.
Using a highly sensitive vibrating electrode, the pattern of naturally occurring electric currents around 1-day-old primary roots of Lepidium sativum L. growing vertically downward and the current pattern following gravistimulation of the root has been examined. A more or less symmetrical pattern of current was found around vertically oriented, downward growing roots. Current entered the root at the root cap, the meristem, and the beginning of the elongation zone and left the root along most of the elongation zone and in the root hair zone. After the root was tilted to a horizontal position, we observed current flowing acropetally at the upper side of the root cap and basipetally at the lower side within about 30 seconds in most cases. After a delay of several minutes, acropetally oriented current was also found flowing along the upper side of the meristematic zone. The apparent density of the acropetal current in the root cap region increased and then decreased with time. Gravitropic curvature was first visible approximately 10 minutes after tilting of the root to the horizontal position. Since the change in the pattern of current in the root cap region precedes bending of the root and is different for the upper and lower side, a close connection is suggested between the current and the transduction of information from the root cap to the elongation zone following graviperception in the cap.  相似文献   

3.
Fan L  Neumann PM 《Plant physiology》2004,135(4):2291-2300
Growth of elongating primary roots of maize (Zea mays) seedlings was approximately 50% inhibited after 48 h in aerated nutrient solution under water deficit induced by polyethylene glycol 6000 at -0.5 MPa water potential. Proton flux along the root elongation zone was assayed by high resolution analyses of images of acid diffusion around roots contacted for 5 min with pH indicator gel. Profiles of root segmental elongation correlated qualitatively and quantitatively (r(2) = 0.74) with proton flux along the surface of the elongation zone from water-deficit and control treatments. Proton flux and segmental elongation in roots under water deficit were remarkably well maintained in the region 0 to 3 mm behind the root tip and were inhibited from 3 to 10 mm behind the tip. Associated changes in apoplastic pH inside epidermal cell walls were measured in three defined regions along the root elongation zone by confocal laser scanning microscopy using a ratiometric method. Finally, external acidification of roots was shown to specifically induce a partial reversal of growth inhibition by water deficit in the central region of the elongation zone. These new findings, plus evidence in the literature concerning increases induced by acid pH in wall-extensibility parameters, lead us to propose that the apparently adaptive maintenance of growth 0 to 3 mm behind the tip in maize primary roots under water deficit and the associated inhibition of growth further behind the tip are related to spatially variable changes in proton pumping into expanding cell walls.  相似文献   

4.
Nazario GM  Lovatt CJ 《Plant physiology》1993,103(4):1203-1210
We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the meristem and the point within the elongation zone at which the rate of elongation reaches 0.3 of the peak rate. For roots in aqueous solution, the basal limit of the DEZ is about 2.5 mm behind the tip of the root cap. Auxin suppressed elongation throughout the elongation zone, but, after 1 to 3 h, elongation resumed, primarily as a result of induction of rapid elongation in the DEZ. Withdrawal of auxin during the period of strong inhibition resulted in exceptionally rapid elongation attributable to the initiation of rapid elongation in the DEZ plus recovery in the main elongation zone. Gravistimulation of auxin-inhibited roots induced rapid elongation in the DEZ along the top of the root. This resulted in rapid gravitropism even though the elongation rate of the root was zero before gravistimulation. The results indicate that cells of the DEZ differ from cells in the bulk of the elongation zone with respect to auxin sensitivity and that DEZ cells play an important role in gravitropism.  相似文献   

5.
To identify the region in which a root perceives a decrease in the ambient water potential and changes its elongation rate, we applied two agar blocks (1 x 1 x 1 mm(3)) with low water potential bilaterally to primary roots of maize (Zea mays) at various positions along the root. When agar blocks with a water potential of -1.60 MPa (-1.60-MPa blocks) or lower were attached to a root tip, the rate of elongation decreased. This decrease did not result from any changes in the water status of elongating cells and was not reversed when the -1.60-MPa blocks were replaced by -0.03-MPa blocks. The rate decreased slightly and was unaffected, respectively, when -1.60-MPa blocks were applied to the so-called decelerating region of the elongating zone and the mature region. However, the rate decreased markedly and did not recover for several hours at least when such blocks were attached to the accelerating region. In this case, the turgor pressure of the elongating cells decreased immediately after the application of the blocks and recovered thereafter. The decrease in elongation rate caused by -1.60-MPa blocks applied to the root tip was unaffected by additional -0.03-MPa blocks applied to the accelerating region and vice versa. We concluded that a significant reduction in root growth could be induced by water stress at the root tip, as well as in the accelerating region of the elongating zone, and that transmission of some signal from these regions to the decelerating region might contribute to the suppression of cell elongation in the elongation region.  相似文献   

6.
In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200-450 μm proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the adjacent proximal region (450 μm away from the root tip up to the first root hair) with a high rate of elongation. In this study, the surface pH was measured in both zones using the microelectrode ion flux estimation technique. The surface pH is highest in the apical part of the transition zone and is lowest at the basal part of the fast elongation zone. Fast cell elongation is inhibited within minutes by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid; concomitantly, apoplastic alkalinization occurs in the affected root zone. Fusicoccin, an activator of the plasma membrane H(+)-ATPase, can partially rescue this inhibition of cell elongation, whereas the inhibitor N,N'-dicyclohexylcarbodiimide does not further reduce the maximal cell length. Microelectrode ion flux estimation experiments with auxin mutants lead to the final conclusion that control of the activity state of plasma membrane H(+)-ATPases is one of the mechanisms by which ethylene, via auxin, affects the final cell length in the root.  相似文献   

7.
Ishikawa H  Hasenstein KH  Evans ML 《Planta》1991,183(3):381-390
We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.  相似文献   

8.
Electric current precedes emergence of a lateral root in higher plants   总被引:3,自引:1,他引:2  
Stable electrochemical patterns appear spontaneously around roots of higher plants and are closely related to growth. An electric potential pattern accompanied by lateral root emergence was measured along the surface of the primary root of adzuki bean (Phaseolus angularis) over 21 h using a microelectrode manipulated by a newly developed apparatus. The electric potential became lower at the point where a lateral root emerged. This change preceded the emergence of the lateral root by about 10 h. A theory is presented for calculating two-dimensional patterns of electric potential and electric current density around the primary root (and a lateral root) using only data on the one-dimensional electric potential measured near the surface of the primary root. The development of the lateral root inside the primary root is associated with the influx of electric current of about 0.7 μA·cm−2 at the surface.  相似文献   

9.
Peters WS  Felle HH 《Plant physiology》1999,121(3):905-912
High-resolution profiles of surface pH and growth along vertically growing maize (Zea mays) primary root tips were determined simultaneously by pH-sensitive microelectrodes and marking experiments. Methodological tests were carried out that proved the reliability of our kinematic growth analysis, while questioning the validity of an alternative technique employed previously. A distal acidic zone around the meristematic region and a proximal one around the elongation zone proper were detected. This pattern as such persisted irrespective of the bulk pH value. The proximal acidic region coincided with maximum relative elemental growth rates (REGR), and both characters reacted in a correlated manner to auxin and cyanide. The distal acidic band was unrelated to growth, but was abolished by cyanide treatment. We conclude that: (a) the pattern of surface pH as such is a regulated feature of growing root tips; (b) the correlation of extracellular pH and growth rate suggests a functional relationship only along proximal portions of the growing root tip; and (c) the distal acidic band is not caused by pH buffering by root cap mucilage, as suggested previously, but rather is controlled by cellular activity.  相似文献   

10.
Frensch J  Hsiao TC 《Plant physiology》1994,104(1):247-254
Transient responses of cell turgor (P) and root elongation to changes in water potential were measured in maize (Zea mays L.) to evaluate mechanisms of adaptation to water stress. Changes of water potential were induced by exposing roots to solutions of KCl and mannitol (osmotic pressure about 0.3 MPa). Prior to a treatment, root elongation was about 1.2 mm h-1 and P was about 0.67 MPa across the cortex of the expansion zone (3-10 mm behind the root tip). Upon addition of an osmoticum, P decreased rapidly and growth stopped completely at pressure below approximately 0.6 MPa, which indicated that the yield threshold (Ytrans,1) was just below the initial turgor. Turgor recovered partly within the next 30 min and reached a new steady value at about 0.53 MPa. The root continued to elongate as soon as P rose above a new threshold (Ytrans,2) of about 0.45 MPa. The time between Ytrans,1 and Ytrans,2 was about 10 min. During this transition turgor gradients of as much as 0.15 MPa were measured across the cortex. They resulted from a faster rate of turgor recovery of cells deeper inside the tissue compared with cells near the root periphery. Presumably, the phloem was the source of the compounds for the osmotic adjustment. Turgor recovery was restricted to the expansion zone, as was confirmed by measurements of pressure kinetics in mature root tissue. Withdrawal of the osmoticum caused an enormous transient increase of elongation, which was related to only a small initial increase of P. Throughout the experiment, the relationship between root elongation rate and turgor was nonlinear. Consequently, when Y were calculated from steady-state conditions of P and root elongation before and after the osmotic treatment, Yss was only 0.21 MPa and significantly smaller compared with the values obtained from direct measurements (0.42-0.64 MPa). Thus, we strongly emphasize the need for measurements of short-term responses of elongation and turgor to determine cell wall mechanics appropriately. Our results indicate that the rate of solute flow into the growth zone could become rate-limiting for cell expansion under conditions of mild water stress.  相似文献   

11.
In the present study, we investigated the alteration of reactive oxygen species production along the longitudinal axis of barley root tips during Cd treatment. In unstressed barley root tips, H2O2 production decreased from the root apex towards the differentiation zone where again, a slight increase was observed towards the more mature region of root. An opposite pattern was observed for O 2 ?? and OH? generation. The amount of both O 2 ?? and OH? was highest in the elongation zone, decreased in the root apex and at the differentiation zone of root, then increased again towards the more mature region of root. An elevated Cd-induced O 2 ?? production started in the elongation zone and increased further along the differentiation zone of barley root tip. In contrast, Cd-induced H2O2 production was localised to the root elongation zone and to the beginning of the differentiation zone. In contrast to Cd-induced H2O2 and O 2 ?? production, Cd reduced OH? production along the whole barley root tip. Our results suggest that not only an increase but also the spatial distribution of reactive oxygen species production is involved in the Cd-induced stress response of barley root tip.  相似文献   

12.
13.
A vibrating probe was used to measure the changes in ionic currents around gravistimulated roots of Zea mays L. in an effort to determine whether these currents are involved in stimulus transduction from the root cap to the elongation zone. We did not observe a migration of the previously reported auxin-insensitive current efflux associated with gravity sensing (T. Björkman, A.C. Leopold [1987] Plant Physiol 84:841-846) back from the root cap. Instead, beginning 10 to 15 min after gravistimulation, an asymmetry in current developed simultaneously along the root around the meristem and apical regions of the elongation zone. This asymmetry comprised a proton efflux from the upper surface, which was superimposed on the symmetrical pattern around the vertical root. The gravity-induced proton efflux was inhibited by the application of the auxin transport inhibitor, 2,3,5-triiodobenzoic acid, whereas the calcium channel blocker, lanthanum, had little effect. Because the onset of the gravity-induced current asymmetry coincided both spatially and temporally with the onset of the differential growth response, we suggest that this current efflux may result from auxin-requiring acid-growth phenomena in the upper root tissue. The implications of this simultaneous onset of both proton efflux and elongation for theories about gravity stimulus transduction are discussed.  相似文献   

14.
Summary Effect of electric current flowing at the surface of stem of bean (Phaseolus angularis) on the growth was studied using an electric isolation between the elongation and mature regions. The growth was retarded by the electric isolation because of change in pH distribution around the stem, associated with decreasing surface electric current. Electric current flowing at the surface between the elongation and mature regions is important for the growth of stems.  相似文献   

15.
Arabidopsis roots grown on inclined agarose gels exhibit a sinusoidal growth pattern known as root waving. While root waving has been attributed to both intrinsic factors (e.g. circumnutation) and growth responses to external signals such as gravity, the potential for physical interactions between the root and its substrate to influence the development of this complex phenotype has been generally ignored. Using a rotating stage microscope and time-lapse digital imaging, we show that (1) root tip mobility is impeded by the gel surface, (2) this impedance causes root tip deflections by amplifying curvature in the elongation zone in a way that is distinctly nontropic, and (3) root tip impedance is augmented by normal gravitropic pressure applied by the root tip against the gel surface. Thus, both lateral corrective bending near the root apex and root tip impedance could be due to different vector components of the same graviresponse. Furthermore, we speculate that coupling between root twisting and bending is a mechanical effect resulting from root tip impedance.  相似文献   

16.
Hypoxia-induced changes in net H+, K+ and O2 fluxes across the plasma membrane (PM) of epidermal root cells were measured using the non-invasive microelectrode ion flux measurement (MIFE) system in elongation, meristem and mature root zones of two barley (Hordeum vulgare L.) varieties contrasting in their waterlogging (WL) tolerance. The ultimate goal of this study was to shed light on the mechanisms underlying effects of WL on plant nutrient acquisition and mechanisms of WL tolerance in barley. Our measurements revealed that functionally different barley root zones have rather different O2 requirements, with the highest O2 influx being in the elongation zone of the root at about 1 mm from the tip. Oxygen deprivation has qualitatively different effects on the activity of PM ion transporters in mature and elongation zones. In the mature zone, hypoxic treatment caused a very sharp decline in K+ uptake in the WL sensitive variety Naso Nijo, but did not reduce K+ influx in the WL tolerant TX9425 variety. In the elongation zone, onset of hypoxia enhanced K+ uptake from roots of both cultivars. Pharmacological experiments suggested that hypoxia-induced K+ flux responses are likely to be mediated by both K(+) -inward- (KIR) and non-selective cation channels (NSCC) in the elongation zone, while in the mature zone K(+) -outward- (KOR) channels are the key contributors. Overall, our results suggest that oxygen deprivation has an immediate and substantial effect on root ion flux patterns, and that this effect is different in WL-sensitive and WL-tolerant cultivars. To what extent this difference in ion flux response to hypoxia is a factor conferring WL tolerance in barley remains to be answered in future studies.  相似文献   

17.
The localization, viability, and culturability of Pseudomonas fluorescens 92rkG5 were analyzed on three morphological root zones (root tip + elongation, root hair, and collar) of 3-, 5-, and 7-day-old tomato plants. Qualitative information about the localization and viability was collected by confocal laser scanning microscopy. Quantitative data concerning the distribution, viability, and culturability were obtained through combined dilution plating and flow cytometry. Colonization by P. fluorescens affected root development in a complex way, causing a general increase in the length of the collar and early stimulation of the primary root growth (3rd day), followed by a reduction in length (7th day). The three root zones showed different distribution, organization, and viability of the bacterial cells, but the distribution pattern within each zone did not change with time. Root tips were always devoid of bacteria, whereas with increasing distance from the apex, microcolonies or strings of cells became more and more prominent. Viability was high in the elongation zone, but it declined in the older parts of the roots. The so-called viable but not culturable cells were observed on the root, and their proportion in the distal (root tip + elongation) zone dramatically increased with time. These results suggest the existence of a specific temporal and spatial pattern of root colonization, related to cell viability and culturability, expressed by the plant-beneficial strain P. fluorescens 92rkG5.  相似文献   

18.
Auxin flow is important for different root developmental processes such as root formation, emergence, elongation and gravitropism. However, the detailed information about the mechanisms regulating the auxin flow is less well understood in rice. We characterized the auxin transport‐related mutants, Ospin‐formed2‐1 (Ospin2‐1) and Ospin2‐2, which exhibited curly root phenotypes and altered lateral root formation patterns in rice. The OsPIN2 gene encodes a member of the auxin efflux carrier proteins that possibly regulates the basipetal auxin flow from the root tip toward the root elongation zone. According to DR5‐driven GUS expression, there is an asymmetric auxin distribution in the mutants that corresponded with the asymmetric cell elongation pattern in the mutant root tip. Auxin transport inhibitor, N‐1‐naphthylphthalamic acid and Ospin2‐1 Osiaa13 double mutant rescued the curly root phenotype indicating that this phenotype results from a defect in proper auxin distribution. The typical curly root phenotype was not observed when Ospin2‐1 was grown in distilled water as an alternative to tap water, although higher auxin levels were found at the root tip region of the mutant than that of the wild‐type. Therefore, the lateral root formation zone in the mutant was shifted basipetally compared with the wild‐type. These results reflect that an altered auxin flow in the root tip region is responsible for root elongation growth and lateral root formation patterns in rice.  相似文献   

19.
Cultivar differences in root elongation under B toxic conditions were observed in barley (Hordeum vulgare L.). A significant increase in the length and width of the root meristematic zone (RMZ) was observed in Sahara 3771 (B tolerant) when it was grown under excessive B concentration, compared to when grown at adequate B supply. This coincided with an increase in cell width and cell numbers in the meristematic zone (MZ), whereas a significant decrease in the length and no significant effect on the width of the MZ was observed in Clipper (B intolerant) when it was grown under excessive B supply. This was accompanied by a decrease in cell numbers, but an increase in the length and width of individual cells present along the MZ. Excessive B concentrations led to a significantly lower osmotic potential within the cell sap of the root tip in SloopVic (B tolerant) and Sahara 3771, while the opposite was observed in Clipper. Enhanced sugar levels in the root tips of SloopVic were observed between 48 and 96 h after excess B was applied. This coincided with an increase in the root elongation rate and with a 2.7-fold increase in sucrose level within mature leaf tissue. A significant decrease in reducing sugar levels was observed in the root tips of Clipper under excessive B concentrations. This coincided with significantly lower root elongation rates and lower sucrose levels in leaf tissues. Results indicate a B tolerance mechanism associated with a complex control of sucrose levels between leaf and root tip that assist in maintaining root growth under B toxicity.  相似文献   

20.
The reduction in growth of maize (Zea mays L.) seedling primary roots induced by salinization of the nutrient medium with 100 millimolar NaCl was accompanied by reductions in the length of the root tip elongation zone, the length of fully elongated epidermal cells, and the apparent rate of cell production: Each was partially restored when calcium levels in the salinized growth medium were increased from 0.5 to 10.0 millimolar. We investigated the possibility that the inhibition of elongation growth by salinity might be associated with an inhibition of cell wall acidification, such as that which occurs when root growth is inhibited by IAA. A qualitative assay of root surface acidification, using bromocresol purple pH indicator in agar, showed that salinized roots, with and without extra calcium, produced a zone of surface acidification which was similar to that produced by control roots. The zone of acidification began 1 to 2 millimeters behind the tip and coincided with the zone of cell elongation. The remainder of the root alkalinized its surface. Kinetics of surface acidification were assayed quantitatively by placing a flat tipped pH electrode in contact with the elongation zone. The pH at the epidermal surfaces of roots grown either with 100 millimolar NaCl (growth inhibitory), or with 10 millimolar calcium ± NaCl (little growth inhibition), declined from 6.0 to 5.1 over 30 minutes. We conclude that NaCl did not inhibit growth by reducing the capacity of epidermal cells to acidify their walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号